Adaptive Probabilistic Forecasting of Electricity Net-Load

Joseph de Vilmarest,
Jethro Browell, Matteo Fasiolo, Yannig Goude, Olivier Wintenberger

INREC, Essen - September 27-28, 2022

Regional Net-load Forecasting

We forecast $y_{t} \in \mathbb{R}$. Our setting: 14 time series. net-load $=$ consumption - intermittent production.

- Scottish \& Southern Electricity Networks
- SP Energy Networks
- Electricity North West
- Nothern Powergrid
- UK Power Networks
- Western Power Distribution

Explanatory Variables: Calendar

Explanatory Variables: Meteorology

Region P, 3 PM

Region A, 3 PM

Region P, 3 PM

Objective

We forecast y_{t} given x_{t}. In what sense ?

- Mean forecast: $\hat{y}_{t}=\mathbb{E}\left[y_{t} \mid x_{t}\right]$. Equivalent to the minimum of $\mathbb{E}\left[\left(y_{t}-\hat{y}_{t}\right)^{2} \mid x_{t}\right]$.

Objective

We forecast y_{t} given x_{t}. In what sense ?

- Mean forecast: $\hat{y}_{t}=\mathbb{E}\left[y_{t} \mid x_{t}\right]$. Equivalent to the minimum of $\mathbb{E}\left[\left(y_{t}-\hat{y}_{t}\right)^{2} \mid x_{t}\right]$.
- Probabilistic forecast: estimation of $\mathcal{L}\left(y_{t} \mid x_{t}\right)$. For $0<q<1$, we find $\hat{y}_{t, q}$ such that $\mathbb{P}\left(y_{t} \leq \hat{y}_{t, q} \mid x_{t}\right)=q$. Equivalent to the minimum of $\mathbb{E}\left[\rho_{q}\left(y_{t}, \hat{y}_{t}\right) \mid x_{t}\right]$:

Offline vs Online

- Offline / Batch: $\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right)$. Example: Empirical Risk Minimizer

$$
\hat{\theta} \in \arg \min \sum_{t \in \mathcal{T}} \ell\left(y_{t}, f_{\hat{\theta}}\left(x_{t}\right)\right) .
$$

Offline vs Online

- Offline / Batch: $\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right)$.

Example: Empirical Risk Minimizer

$$
\hat{\theta} \in \arg \min \sum_{t \in \mathcal{T}} \ell\left(y_{t}, f_{\hat{\theta}}\left(x_{t}\right)\right) .
$$

- Online / Adaptive: $\hat{y}_{t}=f_{\hat{\theta}_{t}}\left(x_{t}\right)$ with $\hat{\theta}_{t+1}=\Phi\left(\hat{\theta}_{t}, x_{t}, y_{t}\right)$.
Example: Online Gradient Descent

$$
\hat{\theta}_{t+1}=\hat{\theta}_{t}-\left.\gamma_{t} \frac{\partial \ell\left(y_{t}, f_{\theta}\left(x_{t}\right)\right)}{\partial \theta}\right|_{\hat{\theta}_{t}}
$$

Offline vs Online

- Offline / Batch: $\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right)$.

Example: Empirical Risk Minimizer

$$
\hat{\theta} \in \arg \min \sum_{t \in \mathcal{T}} \ell\left(y_{t}, f_{\hat{\theta}}\left(x_{t}\right)\right) .
$$

- Online / Adaptive: $\hat{y}_{t}=f_{\hat{\theta}_{t}}\left(x_{t}\right)$ with $\hat{\theta}_{t+1}=\Phi\left(\hat{\theta}_{t}, x_{t}, y_{t}\right)$.
Example: Online Gradient Descent

$$
\hat{\theta}_{t+1}=\hat{\theta}_{t}-\left.\gamma_{t} \frac{\partial \ell\left(y_{t}, f_{\theta}\left(x_{t}\right)\right)}{\partial \theta}\right|_{\hat{\theta}_{t}}
$$

Offline Model in Two Steps ${ }^{1}$

- Generalized Additive Model with Gaussian distribution for mean forecasting:

$$
y_{t}=f_{1}\left(x_{t, 1}\right)+\ldots+f_{d}\left(x_{t, d}\right)+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

f_{1}, \ldots, f_{d} : decomposed on spline basis:

$$
f_{j}(x)=\sum_{k=1}^{m_{j}} \beta_{j, k} B_{j, k}(x) .
$$

${ }^{1}$ J. Browell and M. Fasiolo (2021), Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP, IEEE Transactions on Smart Grid

Offline Model in Two Steps ${ }^{1}$

- Generalized Additive Model with Gaussian distribution for mean forecasting:

$$
y_{t}=f_{1}\left(x_{t, 1}\right)+\ldots+f_{d}\left(x_{t, d}\right)+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

f_{1}, \ldots, f_{d} : decomposed on spline basis:

$$
f_{j}(x)=\sum_{k=1}^{m_{j}} \beta_{j, k} B_{j, k}(x) .
$$

- Probabilistic forecasting: quantile regressions on the residuals because the Gaussian assumption is not satisfied in practice:

$$
\begin{aligned}
& \beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right), \\
& \rho_{q}\left(y, \hat{y}_{q}\right)=\left(\mathbb{1}_{y<\hat{y}_{q}}-q\right)\left(\hat{y}_{q}-y\right) .
\end{aligned}
$$

[^0]
Motivation for Adaptation

Train: 2014-2018. Test: 2019-2021.

Drift of Offline GAM

Introduction

Mean Forecast

Probabilistic Forecast

Linear Gaussian State-Space Model

- GAM:

$$
y_{t}-\mathbf{1}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Linear Gaussian State-Space Model

- GAM:

$$
y_{t}-\mathbf{1}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

- State-Space Model

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}\left(0, Q_{t}\right)
\end{aligned}
$$

Linear Gaussian State-Space Model

- GAM:

$$
y_{t}-\mathbf{1}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- State-Space Model

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}\left(0, Q_{t}\right)
\end{aligned}
$$

Theorem (R. Kalman and R. Bucy, 1961)

If the state-space model is well-specified for known variances, and if $\theta_{1} \sim \mathcal{N}\left(\hat{\theta}_{1}, P_{1}\right)$, then $\theta_{t+1} \mid\left(x_{s}, y_{s}\right)_{s \leq t} \sim \mathcal{N}\left(\hat{\theta}_{t+1}, P_{t+1}\right)$ with

$$
\begin{aligned}
& P_{t \mid t}=P_{t}-\frac{P_{t} f\left(x_{t}\right) f\left(x_{t}\right)^{\top} P_{t}}{f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)+\sigma_{t}^{2}}, \quad P_{t+1}=P_{t \mid t}+Q_{t+1}, \\
& \hat{\theta}_{t+1}=\hat{\theta}_{t}-\frac{P_{t \mid t}}{\sigma_{t}^{2}}\left(f\left(x_{t}\right)\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right)-y_{t}\right)\right) .
\end{aligned}
$$

The Kalman Filter, a Gradient Algorithm

$$
\begin{aligned}
& P_{t \mid t}=P_{t}-\frac{P_{t} f\left(x_{t}\right) f\left(x_{t}\right)^{\top} P_{t}}{f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)+\sigma_{t}^{2}}, \quad P_{t+1}=P_{t \mid t}+Q_{t+1}, \\
& \hat{\theta}_{t+1}=\hat{\theta}_{t}-\frac{P_{t \mid t}}{\sigma_{t}^{2}}\left(f\left(x_{t}\right)\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right)-y_{t}\right)\right) .
\end{aligned}
$$

1. Static ${ }^{2}: Q_{t}=0, \sigma_{t}^{2}=1$.
$\rightarrow P_{t \mid t}=O(1 / t)$.
2. Dynamic with constant variances: $Q_{t}=Q, \sigma_{t}^{2}=\sigma^{2}$.
$\rightarrow P_{t \mid t}=O(1)$. Comparable to Adam, AdaGrad.
3. Variance Tracking: dynamic with adaptive variances ${ }^{3}$.
[^1]
Constant Variances

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}(0, Q) .
\end{aligned}
$$

${ }^{3}$ D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, IEEE Transactions on Power Systems

Constant Variances

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}(0, Q) .
\end{aligned}
$$

- Non convex log-likelihood. No guarantee of optimality.
- Diagonal Covariance Matrix Q. Optimization with iterative grid search ${ }^{1}$.

${ }^{3}$ D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, IEEE Transactions on Power Systems

Coefficient Evolution

State Evolution: Kalman Filtering

Static setting (left): $\theta_{t+1}=\theta_{t} . P_{t \mid t}=O(1 / t)$.
Dynamic setting (right): $\theta_{t+1}-\theta_{t} \sim \mathcal{N}(0, Q) . P_{t \mid t}=O(1)$.

Correction of the Drift

Performances

$$
R M S E=\sqrt{\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}}\left(y_{t}-\hat{y}_{t}\right)^{2}}, \quad M A E=\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}}\left|y_{t}-\hat{y}_{t}\right|
$$

	2019		2020		2021	
Forecast	nRMSE	nMAE	nRMSE	nMAE	nRMSE	nMAE
Persistence (7 days)	0.691	0.589	0.710	0.599	0.737	0.639
Persistence (2 days)	0.767	0.686	0.755	0.668	0.736	0.668
Offline GAM	0.356	0.327	0.485	0.453	0.635	0.601
Incremental offline GAM (yearly)	-	-	0.407	0.376	0.387	0.378
Incremental offline GAM (daily)	0.338	0.307	0.370	0.344	0.377	0.365
Kalman GAM (Static)	0.337	0.307	0.374	0.347	0.380	0.368
Kalman GAM (Dynamic)	$\mathbf{0 . 3 2 4}$	$\mathbf{0 . 2 9 2}$	$\mathbf{0 . 3 2 8}$	$\mathbf{0 . 3 0 1}$	$\mathbf{0 . 3 3 2}$	$\mathbf{0 . 3 0 7}$

Introduction

Mean Forecast

Probabilistic Forecast

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ and $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ and $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- If the model is well-specified:

$$
y_{t} \sim \mathcal{N}\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right), \sigma^{2}+f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)\right)
$$

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ and $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- If the model is well-specified:

$$
y_{t} \sim \mathcal{N}\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right), \sigma^{2}+f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)\right)
$$

- In practice: mean forecast, then quantile regressions on the residuals $y_{t}-\hat{\theta}_{t}^{\top} f\left(x_{t}\right)$.
\rightarrow adaptive quantile regression ?

Adaptive Quantile Regression

Offline quantile regression:

$$
\beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right) .
$$

Adaptive Quantile Regression

Offline quantile regression:

$$
\beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right) .
$$

Online Gradient Descent with step size $\alpha>0$:

$$
\beta_{t+1, q}=\beta_{t, q}-\left.\alpha \frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}},
$$

where $\left.\frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}}=\left(\mathbb{1}_{y_{t}<\hat{y}_{t}+\beta_{t, q_{t}}^{\top}}-q\right) z_{t}$.

Adaptive Quantile Regression

Offline quantile regression:

$$
\beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right) .
$$

Online Gradient Descent with step size $\alpha>0$:

$$
\beta_{t+1, q}=\beta_{t, q}-\left.\alpha \frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}},
$$

where $\left.\frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}}=\left(\mathbb{1}_{y_{t}<\hat{y}_{t}+\beta_{t, q}^{\top} z_{t}}-q\right) z_{t}$.
\rightarrow choice of α ?

Aggregation of Experts

- We use different step sizes α_{k}, typically 10^{k}.

[^2]
Aggregation of Experts

- We use different step sizes α_{k}, typically 10^{k}.
- Experts $\hat{y}_{t, q}^{(k)}$ obtained from α_{k}.

[^3]
Aggregation of Experts

- We use different step sizes α_{k}, typically 10^{k}.
- Experts $\hat{y}_{t, q}^{(k)}$ obtained from α_{k}.
- Aggregation of Experts: Bernstein Online Aggregation ${ }^{4}$:

$$
\hat{y}_{t, q}=\sum_{k} p_{t}^{(k)} \hat{y}_{t, q}^{(k)}
$$

where $p_{t}^{(k)}$ is obtained sequentially.

[^4]
Reliability

Reliability over Time

Evaluation Metric

We use the continuous ranked probability score ${ }^{5}$:

$$
\operatorname{CRPS}(F, y)=\int_{-\infty}^{+\infty}\left(F(x)-\mathbb{1}_{y \leq x}\right)^{2} d x=2 \int_{0}^{1} \rho_{q}\left(y, F^{-1}(q)\right) d q .
$$

Discrete variant:

$$
\operatorname{RPS}\left(\left(\hat{y}_{q_{1}}, \ldots, \hat{y}_{q_{1}}\right), y\right)=\sum_{i=1}^{\prime} \rho_{q_{i}}\left(y, \hat{y}_{q_{i}}\right)\left(q_{i+1}-q_{i-1}\right)
$$

[^5]
Performances

	2019	2020	2021
Offline Method	0.231	0.338	0.454
GAM Kalman (Gaussian Quantiles)	0.212	0.217	0.222
GAM Kalman + Offline QR	$\mathbf{0 . 2 0 6}$	$\mathbf{0 . 2 1 4}$	$\mathbf{0 . 2 1 7}$
Offline GAM + QR OGD $\left(10^{-3}\right)$	0.218	0.270	0.293
Offline GAM + QR OGD $\left(10^{-2}\right)$	0.207	0.221	0.218
Offline GAM + QR OGD $\left(10^{-1}\right)$	0.250	0.248	0.293
Offline GAM + QR OGD (BOA)	0.204	0.211	0.216
GAM Kalman + QR OGD (10-2)	0.205	0.204	0.212
GAM Kalman + QR OGD (BOA)	$\mathbf{0 . 2 0 2}$	$\mathbf{0 . 2 0 1}$	$\mathbf{0 . 2 0 9}$

Conclusion

- Linear Gaussian state-space model: an adaptive mean forecaster. Interpretation as a gradient algorithm.
- Similar algorithm for probabilistic forecasting: Online Gradient Descent.

Future work (Viking Conseil):

- Extreme Forecasts Evaluation.
- Definition of covariates: GAM, neural network.
- Choice of the variances (Variance Tracking).

[^0]: ${ }^{1}$ J. Browell and M. Fasiolo (2021), Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP, IEEE Transactions on Smart Grid

[^1]: ${ }^{2}$ J. de Vilmarest, O. Wintenberger (2021), Stochastic Online Optimization using Kalman Recursion. Journal of Machine Learning Research
 ${ }^{3}$ J. de Vilmarest, O. Wintenberger (2021), Viking: Variational Bayesian Variance Tracking, arXiv:2104.10777

[^2]: ${ }^{4}$ O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

[^3]: ${ }^{4}$ O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

[^4]: ${ }^{4}$ O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

[^5]: ${ }^{5}$ T. Gneiting and A. E. Raftery (2007), Strictly proper scoring rules, prediction, and estimation, Journal of the American statistical Association

