Adaptive Probabilistic Forecasting of Electricity Net-Load

Joseph de Vilmarest, Jethro Browell, Matteo Fasiolo, Yannig Goude, Olivier Wintenberger

INREC, Essen - September 27-28, 2022

Probabilistic Forecast 000000000

Regional Net-load Forecasting

We forecast $y_t \in \mathbb{R}$. Our setting: 14 time series. *net*-load = consumption - *intermittent* production.

Explanatory Variables: Calendar

Region A, 3 PM

Time of Year

Daily Profiles

Probabilistic Forecast 000000000

Explanatory Variables: Meteorology

Probabilistic Forecast 000000000

Objective

We forecast y_t given x_t . In what sense ?

• Mean forecast: $\hat{y}_t = \mathbb{E}[y_t \mid x_t]$. Equivalent to the minimum of $\mathbb{E}[(y_t - \hat{y}_t)^2 \mid x_t]$.

Probabilistic Forecast 000000000

Objective

We forecast y_t given x_t . In what sense ?

- Mean forecast: $\hat{y}_t = \mathbb{E}[y_t \mid x_t]$. Equivalent to the minimum of $\mathbb{E}[(y_t - \hat{y}_t)^2 \mid x_t]$.
- **Probabilistic** forecast: estimation of $\mathcal{L}(y_t | x_t)$. For 0 < q < 1, we find $\hat{y}_{t,q}$ such that $\mathbb{P}(y_t \leq \hat{y}_{t,q} | x_t) = q$. Equivalent to the minimum of $\mathbb{E}[\rho_q(y_t, \hat{y}_t) | x_t]$:

VikinG

Pinball Loss for Various Quantile Levels

Mean Forecast

Probabilistic Forecast 000000000

Offline vs Online

• Offline / Batch: $\hat{y}_t = f_{\hat{\theta}}(x_t)$. Example: Empirical Risk Minimizer

$$\hat{\theta} \in \arg\min \sum_{t \in \mathcal{T}} \ell(y_t, f_{\hat{\theta}}(x_t)).$$

Mean Forecast

Probabilistic Forecast

Offline vs Online

• Offline / Batch: $\hat{y}_t = f_{\hat{\theta}}(x_t)$. Example: Empirical Risk Minimizer

$$\hat{\theta} \in \arg\min \sum_{t \in \mathcal{T}} \ell(y_t, f_{\hat{\theta}}(x_t)).$$

• Online / Adaptive:
$$\hat{y}_t = f_{\hat{\theta}_t}(x_t)$$
 with $\hat{\theta}_{t+1} = \Phi(\hat{\theta}_t, x_t, y_t)$.
Example: Online Gradient Descent

$$\hat{\theta}_{t+1} = \hat{\theta}_t - \gamma_t \frac{\partial \ell(y_t, f_\theta(x_t))}{\partial \theta}\Big|_{\hat{\theta}_t}.$$

Mean Forecast

Probabilistic Forecast 000000000

Offline vs Online

• Offline / Batch:
$$\hat{y}_t = f_{\hat{\theta}}(x_t)$$
.
Example: Empirical Risk Minimizer

$$\hat{\theta} \in \arg\min \sum_{t \in \mathcal{T}} \ell(y_t, f_{\hat{\theta}}(x_t)).$$

• Online / Adaptive:
$$\hat{y}_t = f_{\hat{\theta}_t}(x_t)$$
 with $\hat{\theta}_{t+1} = \Phi(\hat{\theta}_t, x_t, y_t)$.
Example: Online Gradient Descent

$$\hat{\theta}_{t+1} = \hat{\theta}_t - \gamma_t \frac{\partial \ell(y_t, f_\theta(x_t))}{\partial \theta} \Big|_{\hat{\theta}_t}$$

Vikinu

Offline Model in Two Steps¹

• Generalized Additive Model with Gaussian distribution for **mean** forecasting:

$$y_t = f_1(x_{t,1}) + \ldots + f_d(x_{t,d}) + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma^2).$$

 f_1, \ldots, f_d : decomposed on spline basis:

$$f_j(x) = \sum_{k=1}^{m_j} \beta_{j,k} B_{j,k}(x) \, .$$

¹J. Browell and M. Fasiolo (2021), Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP, *IEEE Transactions on Smart Grid*

Offline Model in Two Steps¹

• Generalized Additive Model with Gaussian distribution for **mean** forecasting:

$$y_t = f_1(x_{t,1}) + \ldots + f_d(x_{t,d}) + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma^2).$$

 f_1, \ldots, f_d : decomposed on spline basis:

$$f_j(x) = \sum_{k=1}^{m_j} \beta_{j,k} B_{j,k}(x).$$

• **Probabilistic** forecasting: quantile regressions on the residuals because the Gaussian assumption is not satisfied in practice:

$$\beta_q \in \arg\min_{\beta \in \mathbb{R}^{d_0}} \sum_{t \in \mathcal{T}} \rho_q(y_t - \hat{y}_t, \beta^\top z_t),$$
$$\rho_q(y, \hat{y}_q) = (\mathbb{1}_{y < \hat{y}_q} - q) (\hat{y}_q - y).$$

¹J. Browell and M. Fasiolo (2021), Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP, *IEEE Transactions on Smart Grid*

Probabilistic Forecast 000000000

Motivation for Adaptation

Train: 2014-2018. Test: 2019-2021.

Drift of Offline GAM

Mean Forecast

Probabilistic Forecast 000000000

Introduction

Mean Forecast

Probabilistic Forecast

Probabilistic Forecast 000000000

Linear Gaussian State-Space Model

GAM:

 $y_t - \mathbf{1}^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2)$.

Linear Gaussian State-Space Model

• GAM:

$$y_t - \mathbf{1}^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2).$$

• State-Space Model

$$\begin{aligned} y_t &- \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma_t^2) \,, \\ \theta_t &- \theta_{t-1} \sim \mathcal{N}(0, Q_t) \,. \end{aligned}$$

Linear Gaussian State-Space Model

• GAM:

$$y_t - \mathbf{1}^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2).$$

• State-Space Model

$$y_t - \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma_t^2), \\ \theta_t - \theta_{t-1} \sim \mathcal{N}(0, Q_t).$$

Theorem (R. Kalman and R. Bucy, 1961)

If the state-space model is well-specified for known variances, and if $\theta_1 \sim \mathcal{N}(\hat{\theta}_1, P_1)$, then $\theta_{t+1} \mid (x_s, y_s)_{s \leq t} \sim \mathcal{N}(\hat{\theta}_{t+1}, P_{t+1})$ with

$$P_{t|t} = P_t - \frac{P_t f(x_t) f(x_t)^\top P_t}{f(x_t)^\top P_t f(x_t) + \sigma_t^2}, \qquad P_{t+1} = P_{t|t} + Q_{t+1},$$
$$\hat{\theta}_{t+1} = \hat{\theta}_t - \frac{P_{t|t}}{\sigma_t^2} \left(f(x_t) (\hat{\theta}_t^\top f(x_t) - y_t) \right).$$

The Kalman Filter, a Gradient Algorithm

$$P_{t|t} = P_t - \frac{P_t f(x_t) f(x_t)^{\top} P_t}{f(x_t)^{\top} P_t f(x_t) + \sigma_t^2}, \qquad P_{t+1} = P_{t|t} + Q_{t+1}, \\ \hat{\theta}_{t+1} = \hat{\theta}_t - \frac{P_{t|t}}{\sigma_t^2} \left(f(x_t) (\hat{\theta}_t^{\top} f(x_t) - y_t) \right).$$

1. Static²:
$$Q_t = 0, \sigma_t^2 = 1$$
.
 $\rightarrow P_{t|t} = O(1/t)$.

- 2. **Dynamic** with constant variances: $Q_t = Q, \sigma_t^2 = \sigma^2$. $\rightarrow P_{t|t} = O(1)$. Comparable to Adam, AdaGrad.
- 3. Variance Tracking: dynamic with adaptive variances³.

$^2 {\rm J.}$ de Vilmarest, O. Wintenberger (2021), Stochastic Online Optimization using Kalman Recursion. Journal of Machine Learning Research

³J. de Vilmarest, O. Wintenberger (2021), Viking: Variational Bayesian Variance Tracking, *arXiv:2104.10777*

Mean Forecast

Probabilistic Forecast 000000000

Constant Variances

$$y_t - \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2),$$

 $\theta_t - \theta_{t-1} \sim \mathcal{N}(0, Q).$

³D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, *IEEE Transactions on Power Systems*

Vikinu

Mean Forecast

Probabilistic Forecast

Constant Variances

$$y_t - \theta_t^{\top} f(x_t) \sim \mathcal{N}(0, \sigma^2),$$

 $\theta_t - \theta_{t-1} \sim \mathcal{N}(0, Q).$

- Non convex log-likelihood. No guarantee of optimality.
- Diagonal Covariance Matrix Q. Optimization with *iterative grid* search¹.

³D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, *IEEE Transactions on Power Systems*

Vikinu

Mean Forecast

Probabilistic Forecast 000000000

Coefficient Evolution

Static setting (left): $\theta_{t+1} = \theta_t$. $P_{t|t} = O(1/t)$. Dynamic setting (right): $\theta_{t+1} - \theta_t \sim \mathcal{N}(0, Q)$. $P_{t|t} = O(1)$.

Mean Forecast

Probabilistic Forecast

Correction of the Drift

Vikinu

Mean Forecast

Probabilistic Forecast 000000000

Performances

$$\mathsf{RMSE} = \sqrt{rac{1}{|\mathcal{T}|}\sum_{t\in\mathcal{T}}(y_t-\hat{y}_t)^2}\,,\qquad \mathsf{MAE} = rac{1}{|\mathcal{T}|}\sum_{t\in\mathcal{T}}|y_t-\hat{y}_t|$$

	201	2019		2020		2021	
Forecast	nRMSE	nMAE	nRMSE	nMAE	nRMSE	nMAE	
Persistence (7 days)	0.691	0.589	0.710	0.599	0.737	0.639	
Persistence (2 days)	0.767	0.686	0.755	0.668	0.736	0.668	
Offline GAM	0.356	0.327	0.485	0.453	0.635	0.601	
Incremental offline GAM (yearly)	-	-	0.407	0.376	0.387	0.378	
Incremental offline GAM (daily)	0.338	0.307	0.370	0.344	0.377	0.365	
Kalman GAM (Static)	0.337	0.307	0.374	0.347	0.380	0.368	
Kalman GAM (Dynamic)	0.324	0.292	0.328	0.301	0.332	0.307	

Probabilistic Forecast •00000000

Introduction

Mean Forecast

Probabilistic Forecast

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_t \mid (x_s, y_s)_{s < t} \sim \mathcal{N}(\hat{\theta}_t, P_t)$ and $y_t - \theta_t^\top f(x_t) \sim \mathcal{N}(0, \sigma^2)$.

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_t \mid (x_s, y_s)_{s < t} \sim \mathcal{N}(\hat{\theta}_t, P_t)$ and $y_t - \theta_t^\top f(x_t) \sim \mathcal{N}(0, \sigma^2)$.

• If the model is well-specified:

$$y_t \sim \mathcal{N}(\hat{\theta}_t^{\top} f(x_t), \sigma^2 + f(x_t)^{\top} P_t f(x_t)).$$

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_t \mid (x_s, y_s)_{s < t} \sim \mathcal{N}(\hat{\theta}_t, P_t)$ and $y_t - \theta_t^\top f(x_t) \sim \mathcal{N}(0, \sigma^2)$.

• If the model is well-specified:

$$y_t \sim \mathcal{N}(\hat{\theta}_t^{\top} f(x_t), \sigma^2 + f(x_t)^{\top} P_t f(x_t)).$$

In practice: mean forecast, then quantile regressions on the residuals y_t − θ⁺_t f(x_t).
 → adaptive quantile regression ?

Mean Forecast

Probabilistic Forecast

Adaptive Quantile Regression

Offline quantile regression:

$$\beta_q \in \arg\min_{\beta \in \mathbb{R}^{d_0}} \sum_{t \in \mathcal{T}} \rho_q(y_t - \hat{y}_t, \beta^\top z_t).$$

Mean Forecast

Probabilistic Forecast

Adaptive Quantile Regression

Offline quantile regression:

$$\beta_q \in \arg\min_{\beta \in \mathbb{R}^{d_0}} \sum_{t \in \mathcal{T}} \rho_q(y_t - \hat{y}_t, \beta^\top z_t).$$

Online Gradient Descent with step size $\alpha > 0$:

$$\beta_{t+1,q} = \beta_{t,q} - \alpha \frac{\partial \rho_q(\mathbf{y}_t - \hat{\mathbf{y}}_t, \beta^\top \mathbf{z}_t)}{\partial \beta} \Big|_{\beta_{t,q}},$$

where
$$\frac{\partial \rho_q(y_t - \hat{y}_t, \beta^\top z_t)}{\partial \beta}\Big|_{\beta_{t,q}} = (\mathbb{1}_{y_t < \hat{y}_t + \beta_{t,q}^\top z_t} - q) z_t.$$

Probabilistic Forecast

Adaptive Quantile Regression

Offline quantile regression:

$$\beta_q \in \arg\min_{\beta \in \mathbb{R}^{d_0}} \sum_{t \in \mathcal{T}} \rho_q(y_t - \hat{y}_t, \beta^\top z_t).$$

Online Gradient Descent with step size $\alpha > 0$:

$$\beta_{t+1,q} = \beta_{t,q} - \alpha \frac{\partial \rho_q(\mathbf{y}_t - \hat{\mathbf{y}}_t, \beta^\top \mathbf{z}_t)}{\partial \beta} \Big|_{\beta_{t,q}},$$

where
$$\frac{\partial \rho_q(y_t - \hat{y}_t, \beta^\top z_t)}{\partial \beta}\Big|_{\beta_{t,q}} = (\mathbb{1}_{y_t < \hat{y}_t + \beta_{t,q}^\top z_t} - q) z_t.$$

 \rightarrow choice of α ?

Mean Forecast

Probabilistic Forecast

Aggregation of Experts

• We use different step sizes α_k , typically 10^k .

 $^{4}\text{O}.$ Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

Mean Forecast

Probabilistic Forecast

Aggregation of Experts

- We use different step sizes α_k , typically 10^k .
- Experts $\hat{y}_{t,q}^{(k)}$ obtained from α_k .

⁴O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, *Machine Learning*

Probabilistic Forecast

Aggregation of Experts

- We use different step sizes α_k , typically 10^k .
- Experts $\hat{y}_{t,q}^{(k)}$ obtained from α_k .
- Aggregation of Experts: Bernstein Online Aggregation⁴:

$$\hat{y}_{t,q} = \sum_{k} p_t^{(k)} \hat{y}_{t,q}^{(k)} ,$$

where $p_t^{(k)}$ is obtained sequentially.

 $^{^{\}rm 4}{\rm O}.$ Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

Probabilistic Forecast

Reliability

GAM Kalman + Offline QR: 2019

GAM Kalman + QR OGD (BOA): 2019

Mean Forecast

Probabilistic Forecast

Reliability over Time

Kalman GAM then QR OGD (BOA)

Probabilistic Forecast

Evaluation Metric

We use the *continuous ranked probability score*⁵:

$$CRPS(F, y) = \int_{-\infty}^{+\infty} (F(x) - \mathbb{1}_{y \le x})^2 dx = 2 \int_{0}^{1} \rho_q(y, F^{-1}(q)) dq.$$

Discrete variant:

$$RPS((\hat{y}_{q_1},\ldots,\hat{y}_{q_i}),y) = \sum_{i=1}^{l} \rho_{q_i}(y,\hat{y}_{q_i})(q_{i+1}-q_{i-1}),$$

⁵T. Gneiting and A. E. Raftery (2007), Strictly proper scoring rules, prediction, and estimation, *Journal of the American statistical Association*

Mean Forecast

Probabilistic Forecast

Performances

	2019	2020	2021
Offline Method	0.231	0.338	0.454
GAM Kalman (Gaussian Quantiles)	0.212	0.217	0.222
GAM Kalman + Offline QR	0.206	0.214	0.217
Offline GAM + QR OGD (10^{-3})	0.218	0.270	0.293
Offline GAM + QR OGD (10^{-2})	0.207	0.221	0.218
Offline GAM + QR OGD (10^{-1})	0.250	0.248	0.293
Offline GAM + QR OGD (BOA)	0.204	0.211	0.216
GAM Kalman + QR OGD (10^{-2})	0.205	0.204	0.212
GAM Kalman + QR OGD (BOA)	0.202	0.201	0.209

Mean Forecast

Probabilistic Forecast 00000000

Conclusion

- Linear Gaussian state-space model: an adaptive mean forecaster. Interpretation as a gradient algorithm.
- Similar algorithm for probabilistic forecasting: Online Gradient Descent.
- Future work (Viking Conseil):
 - Extreme Forecasts Evaluation.
 - Definition of covariates: GAM, neural network.
 - Choice of the variances (Variance Tracking).

