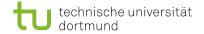


Modeling Volatility and Dependence of European Carbon and Energy Prices

INREC 2022 Jonathan Berrisch[‡], **Sven Pappert**[†], Antonia Arsova^{†,*}, Florian Ziel[‡]


[†]TU Dortmund University [‡]University of Duisburg-Essen *RWI – Leibniz Institute for Economic Research

Contents

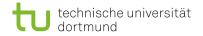
Motivation & Data

Statistical Methods

Motivation & Data

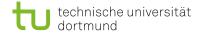
Motivation & Data

Motivation & Data


- Understanding European Allowances (EUA) dynamics is important for several fields:
 - Portfolio & Risk Management,
 - Sustainability Planing,
 - Political decisions,


...

- How can the dynamics be characterized?
- On their own, EUA prices are 'just' a random walk.
- The first differences are stationary and heteroskedastic.
- Autoregressive Volatility modeling (ARCH, GARCH, ...) is sensible!


- EUA prices are obviously connected to the energy market Chevallier (2019),
- But what is the exact form of the connection?
- We consider multivariate autoregressive (VAR) and cointegrating (VECM) relations for mean modeling.
- We further consider copulas for contemporaneous stochastic dependence structure modeling.
- In total our model is a VECM-Copula-GARCH model.
- The model generalizes the copula-GARCH model, Aloui et al. (2013), Jondeau & Rockinger (2006), Hu (2006).

Motivation & Data

6/32

Methods

Statistical Methods

Statistical Methods

- Let $\mathbf{X}_t = (X_{1,t}, \dots, X_{d,t})$ be a *d*-variate time series,
- Let the conditional joint distribution of $\mathbf{X}_t | \mathcal{F}_{t-1}$ be denoted by $F_{\mathbf{X}_t | \mathcal{F}_{t-1}}$.
- The conditional marginal distributions of $X_{i,t}|\mathcal{F}_{t-1}$ are denoted by $F_{X_{i,t}|\mathcal{F}_{t-1}}$.
- Then by Sklars Theorem, Sklar (1959),

$$F_{\mathbf{X}_t|\mathcal{F}_{t-1}}(\mathbf{a}|\mathcal{F}_{t-1}) = C[F_{X_{1,t}|\mathcal{F}_{t-1}}(a_1;\mu_{1,t},\sigma_{1,t},\vartheta_1),\dots, \qquad (\mathbf{1})$$
$$F_{X_{d,t}|\mathcal{F}_{t-1}}(a_d;\mu_{d,t},\sigma_{d,t},\vartheta_d); \Xi_t,\Theta]$$

- The model is specified by its marginal specifications $F_{X_{i,t}|\mathcal{F}_{t-1}}(a_i; \mu_{i,t}, \sigma_{i,t}, \vartheta_i)$ and dependence structure C.
- The following is comprised of descriptions of
 - Marginal distribution $F_{X_{i,t}|\mathcal{F}_{t-1}}$,
 - **mean modeling** $\mu_{i,t}$,
 - volatility modeling $\sigma_{i,t}$,
 - dependence structure C and
 - time varying dependence parameters Ξ_t .

Marginal Specification

- We choose the generalized t-distribution, Theodossiou (1998), $t_{\mu,\sigma,\lambda,\nu}$ as marginal distribution,
- Reparametrize such that $\mu \leftrightarrow$ mean and $\sigma^2 \leftrightarrow$ variance.
- λ and ν can be interpreted as skewness and heavy-tailedness.
- Mean and Variance are modeled time varying
- Skewness and heavy-tailedness are assumed to be constant.

Mean modeling

 The means are modeled with a vector error correction model (VECM),

$$\Delta \boldsymbol{\mu}_t := \Delta \mathbf{x}_t = \Pi x_{t-1} + \Gamma \Delta x_{t-1}.$$
(2)

- where $\Pi = \alpha \beta$ with $\alpha, \beta \in \mathbb{R}^{d \times r}$ and r is the cointegration rank.
- β comprises the cointegrating relations, hence βx_{t-1} is stationary.
- \blacksquare α determines the speed of adjustment to the equilibrium.
- The model accounts for autoregressive influences with $\Gamma \in \mathbb{R}^{d \times d}$ as well as long term relations with Π .

Volatility Modeling

- The volatility is modeled in a univariate manner,
- Each time series volatility is modeled by a leverage GARCH process,

$$\sigma_{i,t}^2 = \omega_i + \alpha_i^+ (\epsilon_{t-1}^+)^2 + \alpha_i^- (\epsilon_{t-1}^-)^2.$$
(3)

- Negative shocks can have stronger/weaker influences on the volatility.
- For $\alpha_i^+ = \alpha_i^-$ the usual GARCH is recovered.

Dependence Modeling

- In this work we choose the t-copula Demarta & McNeil (2005), as dependence structure, $C = C^t$.
- The t-copula allows for linear and heavy-tailed dependence,
- It is constructed using the multivariate t-distribution,

$$C^{t}[u_{1},\ldots,u_{d}] = t_{\Sigma,\kappa}(t_{\kappa}^{-1}(u_{1}),\ldots,t_{\kappa}^{-1}(u_{d}))$$
(4)

The lower the degree of freedom κ, the heavier the tails, increasing the coincidence of extreme events.

Time Varying Dependence

The matrix governing the linear dependence is allowed to be time-varying, $\Sigma=\Sigma_t$,

$$\Sigma_t = \Lambda(\rho_t) \tag{5}$$

$$\rho_{ij,t} = \eta_{0,ij} + \eta_{1,ij}\rho_{ij,t-1} + \eta_{2,ij}z_{i,t-1}z_{j,t-1}$$
(6)

- where Λ is a suitable link function assuring that Σ_t is positive semi-definite,
- $z_{i,t-1}$ is the standardized residual from time series *i*, *i* ∈ {1,...,*d*} at time *t* − 1,

$$z_{i,t-1} = \frac{x_{i,t-1} - \mu_{i,t-1}}{\sigma_{i,t-1}}.$$
(7)

Statistical Methods

14 / 32

Several models are nested by the VECM-Copula-GARCH model: $\Gamma = 0, \Pi = 0 \rightarrow \mathsf{RW}_{\mathsf{ncp,lev}}^{\sigma_t,\rho_t},$ $\Gamma = 0, \Pi = 0, \alpha^+ = 0, \alpha^- = 0, \beta = 0 \rightarrow \mathsf{RW}_{\mathsf{ncp,lev}}^{\sigma,\rho_t},$ $\alpha^+ = 0, \alpha^- = 0, \beta = 0, \nu \rightarrow \infty, \eta_1 = 0, \eta_2 = 0,$ $\kappa \rightarrow \infty, \mathsf{ncp} = 1, \rightarrow \mathsf{VECM}^{\sigma,\rho}$

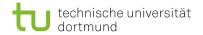
Estimation

- The model (and all nested models) are estimated in a one-step procedure with maximum likelihood estimation.
- Hence there is no transmission of estimation errors.
- Also, features of the data are attributed to the correct model component.

Forecasting Study

- We compare the model and nested models forecasting performance,
- Further we include an exponential smoothing (ETS) model.
- 1-30 day-ahead forecasts are examined in a rolling window forecasting study.
- The forecasts are approximated by Monte-Carlo simulations.
- The window size is 1000,
- Forecasts are conducted from 250 observations.

- Point forecasts are evaluated by the RMSE,
- univariate probabilistic forecasts are evaluated by the CRPS,
- Temporal as well as cross-sectional multivariate forecasts are evaluated by the Energy Score


$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{x}_i - x_i)^2},$$

$$CRPS = \int dt (\hat{F}(t) - F(t))^2,$$

$$ES = \frac{1}{2} E_{\hat{F}} ||\mathbf{X} - \mathbf{X}'|| - E_{\hat{F}} ||\mathbf{X} - \mathbf{x}||.$$
(10)

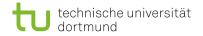
Statistical Methods

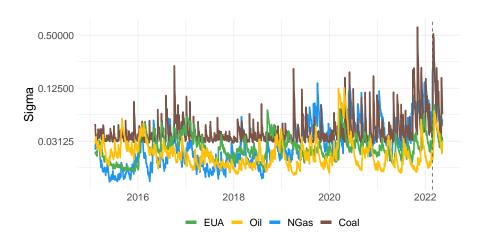
18 / 32

Results

Statistical Methods

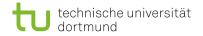
Model	$\mathrm{ES}^{\mathrm{All}}_{1-30}$	$\mathrm{ES}_{1-30}^{\mathrm{EUA}}$	$\mathrm{ES}_{1-30}^{\mathrm{Oil}}$	$\mathrm{ES}^{\mathrm{NGas}}_{1-30}$	$\mathrm{ES}_{1-30}^{\mathrm{Coal}}$	$\mathrm{ES}_{1}^{\mathrm{All}}$	$\mathrm{ES}_{5}^{\mathrm{All}}$	$\mathrm{ES}_{30}^{\mathrm{All}}$
Model	E_{31-30}	ES_{1-30}	E_{31-30}	ES_{1-30}	ES_{1-30}	\mathbf{LS}_1	E_{25}	ьэ ₃₀
$\mathrm{RW}^{\sigma,\rho}$	1.11	0.37	0.39	0.71	0.47	0.04	0.11	0.28
$\mathrm{RW}_{lev,ncp}^{\sigma_t,\rho}$	0.76	0.59	3.83	0.43	-0.24	2.12	1.94	0.71
$\mathrm{RW}_{lev,ncp}^{\sigma_t,\rho_t}$	0.71	0.88	4.15	0.20	-0.26	2.27	1.96	0.80
$\mathrm{RW}_{ncp}^{\sigma_t,\rho}$	0.25	0.38	3.32	-0.20	-0.23	2.24	1.85	0.02
$\mathrm{RW}_{ncp}^{\sigma_t,\rho_t}$	0.22	0.47	3.22	-0.24	-0.10	2.14	1.86	0.10
$\mathrm{VECM}^{r0,\sigma,\rho_t}$	0.07	0.52	-0.37	0.16	0.54	-0.63	-0.48	0.11
$\text{VECM}_{ncp}^{r1,\sigma,\rho_t}$	-4.20	-3.67	-2.36	-4.92	-0.07	-1.28	-1.40	-6.16
$\text{VECM}_{ncp}^{r2,\sigma,\rho_t}$	-4.63	0.67	-1.91	-7.06	-0.65	-0.61	-1.32	-6.38
$\operatorname{VECM}^{\widetilde{r3},\sigma_t,\rho}$	-6.35	-2.32	-1.53	-9.51	-0.91	0.38	-0.15	-9.95
$\operatorname{VECM}^{r4,\sigma,\rho_t}$	-9.61	-4.88	-3.83	-14.67	-2.80	-1.00	-2.42	-14.60
ETS^{σ}	-5.21	2.88	-0.04	-2.88	-0.40	-3.74	-5.50	-9.26
Coloring w.r.t	. test stat	istic: <-5	-4 -3	-2 -1 0	1 2 3	4 >5		

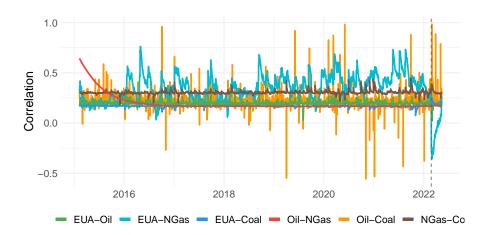

CRPS	EUA			NGas			Oil			Coal		
Model	H1	H5	H30	H1	H5	H30	H1	H5	H30	H1	H5	H30
$\mathrm{RW}^{\sigma,\rho}$	0.01	0.04	0.08	0.01	0.03	0.09	0.03	0.07	0.17	0.01	0.03	0.12
$\mathrm{RW}_{lev,ncp}^{\sigma_t,\rho}$	0.67	0.14	1.33	3.62	5.74	4.48	3.09	2.42	-0.04	1.04	1.06	-0.75
$\mathrm{RW}_{lev,ncn}^{\sigma_t,\rho_t}$	1.17	0.58	1.67	3.65	5.56	5.65	3.34	2.42	-0.25	1.25	0.90	-0.74
$\mathrm{RW}_{ncp}^{\sigma_t,\rho}$	1.36	0.21	0.69	4.01	5.75	2.78	3.13	2.20	-0.75	1.09	0.99	-0.64
$\mathrm{RW}_{ncn}^{\sigma_t,\rho_t}$	1.19	0.25	0.82	3.88	5.70	2.92	3.18	2.27	-0.64	0.99	0.87	-0.56
$\text{VECM}^{r0,\sigma,\rho_t}$	-0.03	1.00	0.39	-1.53	-0.79	-0.49	-0.91	-0.60	0.13	-0.51	-0.26	0.67
$\text{VECM}_{ncp}^{r1,\sigma,\rho_t}$	-0.45	-0.43	-7.89	-0.49	-0.38	-4.69	-1.71	-1.77	-7.81	-1.14	-0.04	0.53
$\text{VECM}^{r2,\sigma,\rho_t}$	-0.01	1.74	-0.32	-1.12	-1.32	-2.27	-0.72	-1.87	-11.92	-0.59	-0.20	-1.00
$VECM^{r_3,\sigma_t,\rho}$	0.07	1.55	-6.70	0.09	-0.41	-1.00	0.46	0.02	-17.96	0.63	-0.15	-0.89
$\mathrm{VECM}^{r4,\sigma,\rho_t}$	0.43	-1.57	-9.05	-1.49	-1.81	-4.37	-1.13	-3.26	-25.93	-0.41	0.49	-3.99
ETS^{σ}	0.07	0.69	4.92	-2.18	-0.35	0.19	1.69	-0.70	-4.04	-0.06	-1.02	-2.79


Coloring w.r.t. test statistic: <-5 -4 -3 -2 -1 0 1 2 3 4 >5

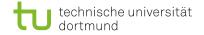
RMSE	EUA			NGas			Oil			Coal		
Model	H1	H_{2}	H30	H1	H5	H30	H1	H5	H30	H1	H5	H30
$\mathrm{R}\!\mathrm{W}^{\sigma,\rho}$	0.03	0.07	0.14	0.03	0.07	0.18	0.05	0.13	0.31	0.03	0.07	0.22
$\mathrm{RW}_{lev,ncp}^{\sigma_t,\rho}$	-0.17	0.02	0.07	-0.51	-0.07	0.02	-0.15	-0.32	0.13	0.05	0.02	0.12
$\mathrm{RW}_{lev,ncp}^{\sigma_t,\rho_t}$	0.18	0.12	-0.01	-0.14	0.00	-0.13	-0.09	-0.53	-0.30	0.33	-0.12	0.02
$\mathrm{RW}_{ncp}^{\sigma_t,\rho}$	0.27	0.03	0.15	-0.21	-0.07	0.21	-0.11	-0.10	-0.12	-0.05	0.30	0.12
$\mathrm{RW}_{non}^{\sigma_t,\rho_t}$	-0.08	0.15	0.15	-0.26	-0.10	-0.15	-0.27	-0.15	-0.03	-0.35	0.15	-0.07
$\mathrm{VECM}^{r0,\sigma,\rho_t}$	-0.26	0.69	0.65	-1.46	-0.56	-0.03	0.01	-1.03	-0.32	0.05	-0.40	0.03
$\text{VECM}_{ncn}^{r1,\sigma,\rho_t}$	-1.45	-0.66	-7.84	-0.78	-0.85	-3.81	-0.34	-1.65	-5.48	-0.64	-0.32	2.59
$\text{VECM}_{ncn}^{r2,\sigma,\rho_t}$	0.17	1.25	-0.66	-1.33	-2.03	-2.72	0.82	-1.95	-8.55	-0.17	0.16	1.34
$\text{VECM}^{r3,\sigma_t,\rho}$	-0.51	0.70	-8.22	-1.16	-1.59	-1.14	-0.18	-1.46	-13.24	0.01	-0.58	1.74
$\mathrm{VECM}^{r4,\sigma,\rho_t}$	-0.41	0.00	-10.01	-1.54	-2.58	-3.39	0.63	-2.40	-16.85	-0.03	0.88	2.90
ETS^{σ}	0.52	0.90	4.70	-0.69	0.65	0.48	0.20	-1.15	-2.91	0.60	-4.18	-11.68

Coloring w.r.t. test statistic: $\langle -5 \ -4 \ -3 \ -2 \ -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ >5$


- The best performing model is $RW_{ncp,lev}^{\rho_t,\sigma_t}$,
- The temporal evolution of volatilities $\sigma_{i,t}^2$ gives information about the evolution of uncertainties in the market.
- The linear dependencies $\Lambda(\rho_{ij,t})$ give information about the connection between markets.



Statistical Methods


24 / 32

Statistical Methods

25 / 32

Discussion & Outlook

Statistical Methods

Conclusion

- For the log-prices cointegration is not important for forecasting,
- Leverage volatility modeling enhances performance,
- Time varying dependence parameters also improve multivariate forecast.
- Leverage and skewness are also important.

- Since the beginning of the russian invasion of Ukraine, volatility increases,
- The linear dependence between EUA NGas drops during the beginning of the war,
- The dependence relaxes shortly afterwards.

Outlook

- Repeat analysis in levels,
- Use other transformations beforehand.
- Consider other copula models (e.g. Vine copulas)
- Use more/other data.

Literature

Theodossiou, P. (1998).

Financial data and the skewed generalized t distribution. Management Science, 44(12-part-1), 1650-1661.

Energy Economics 42 (2014) 332-342

Demarta, S., & McNeil, A. J. (2005).

The t copula and related copulas. International statistical review, 73(1), 111-129.

Jondeau, E. & Rockinger, M. (2006)

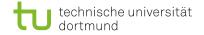
The Copula-GARCH model of conditional dependencies: An international stock market application

Journal of International Money and Finance 25 (2006) 827 - 853

Literature

Aloui, R. et al. (2013)

Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management


Energy Economics 42 (2014) 332-342

Chevallier, J. et. al. (2019)

A conditional dependence approach to CO₂-energy price relationships, Energy Economics, 81 (2019) 812-821

Hu, L. (2006)

Dependence patterns across financial markets: a mixed copula approach Applied Financial Economics

Thanks for your Attention!