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Motivation & Data

Understanding European Allowances (EUA) dynamics is
important for several fields:

Portfolio & Risk Management,
Sustainability Planing,
Political decisions,
. . .

How can the dynamics be characterized?
On their own, EUA prices are ’just’ a random walk.
The first differences are stationary and heteroskedastic.
Autoregressive Volatility modeling (ARCH, GARCH, . . .) is
sensible!
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EUA prices are obviously connected to the energy market
Chevallier (2019),
But what is the exact form of the connection?
We consider multivariate autoregressive (VAR) and
cointegrating (VECM) relations for mean modeling.
We further consider copulas for contemporaneous stochastic
dependence structure modeling.
In total our model is a VECM-Copula-GARCH model.
The model generalizes the copula-GARCH model, Aloui et al.
(2013), Jondeau & Rockinger (2006), Hu (2006).
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Methods
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Statistical Methods

Let Xt = (X1,t, . . . , Xd,t) be a d-variate time series,
Let the conditional joint distribution of Xt|Ft−1 be denoted by
FXt|Ft−1

.
The conditional marginal distributions of Xi,t|Ft−1 are denoted
by FXi,t|Ft−1

.
Then by Sklars Theorem, Sklar (1959),

FXt|Ft−1
(a|Ft−1) = C[FX1,t|Ft−1

(a1;µ1,t, σ1,t, ϑ1), . . . , (1)
FXd,t|Ft−1

(ad;µd,t, σd,t, ϑd); Ξt,Θ]
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The model is specified by its marginal specifications
FXi,t|Ft−1

(ai;µi,t, σi,t, ϑi) and dependence structure C.
The following is comprised of descriptions of

Marginal distribution FXi,t|Ft−1
,

mean modeling µi,t,
volatility modeling σi,t,
dependence structure C and
time varying dependence parameters Ξt.
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Marginal Specification

We choose the generalized t-distribution, Theodossiou (1998),
tµ,σ,λ,ν as marginal distribution,
Reparametrize such that µ ↔ mean and σ2 ↔ variance.
λ and ν can be interpreted as skewness and heavy-tailedness.
Mean and Variance are modeled time varying
Skewness and heavy-tailedness are assumed to be constant.
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Mean modeling

The means are modeled with a vector error correction model
(VECM),

∆µt := ∆xt = Πxt−1 + Γ∆xt−1. (2)

where Π = αβ with α, β ∈ Rd×r and r is the cointegration rank.
β comprises the cointegrating relations, hence βxt−1 is
stationary.
α determines the speed of adjustment to the equilibrium.
The model accounts for autoregressive influences with
Γ ∈ Rd×d as well as long term relations with Π.
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Volatility Modeling

The volatility is modeled in a univariate manner,
Each time series volatility is modeled by a leverage GARCH
process,

σ2
i,t = ωi + α+

i (ϵ
+
t−1)

2 + α−
i (ϵ

−
t−1)

2. (3)

Negative shocks can have stronger/weaker influences on the
volatility.
For α+

i = α−
i the usual GARCH is recovered.
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Dependence Modeling

In this work we choose the t-copula Demarta & McNeil (2005),
as dependence structure, C = Ct.
The t-copula allows for linear and heavy-tailed dependence,
It is constructed using the multivariate t-distribution,

Ct[u1, . . . , ud] = tΣ,κ(t
−1
κ (u1), . . . , t

−1
κ (ud)) (4)

The lower the degree of freedom κ, the heavier the tails,
increasing the coincidence of extreme events.
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Time Varying Dependence

The matrix governing the linear dependence is allowed to be
time-varying, Σ = Σt,

Σt =Λ(ρt) (5)
ρij,t =η0,ij + η1,ijρij,t−1 + η2,ijzi,t−1zj,t−1 (6)

where Λ is a suitable link function assuring that Σt is positive
semi-definite,
zi,t−1 is the standardized residual from time series i,
i ∈ {1, . . . , d} at time t− 1,

zi,t−1 =
xi,t−1 − µi,t−1

σi,t−1
. (7)
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Several models are nested by the VECM-Copula-GARCH model:
Γ = 0,Π = 0 → RWσt,ρt

ncp,lev,
Γ = 0,Π = 0,α+ = 0,α− = 0,β = 0 → RWσ,ρt

ncp,lev,
α+ = 0,α− = 0,β = 0, ν → ∞,η1 = 0,η2 = 0,
κ → ∞,ncp = 1,→ VECMσ,ρ

...
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Estimation

The model (and all nested models) are estimated in a one-step
procedure with maximum likelihood estimation.
Hence there is no transmission of estimation errors.
Also, features of the data are attributed to the correct model
component.
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Forecasting Study

We compare the model and nested models forecasting
performance,
Further we include an exponential smoothing (ETS) model.
1-30 day-ahead forecasts are examined in a rolling window
forecasting study.
The forecasts are approximated by Monte-Carlo simulations.
The window size is 1000,
Forecasts are conducted from 250 observations.
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Point forecasts are evaluated by the RMSE,
univariate probabilistic forecasts are evaluated by the CRPS,
Temporal as well as cross-sectional multivariate forecasts are
evaluated by the Energy Score

RMSE =

√√√√ 1

N

N∑
i=1

(x̂i − xi)2, (8)

CRPS =

∫
dt(F̂ (t)− F (t))2, (9)

ES =
1

2
EF̂ ||X−X′|| − EF̂ ||X− x||. (10)
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Results
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The best performing model is RWρt,σt

ncp,lev,
The temporal evolution of volatilities σ2

i,t gives information
about the evolution of uncertainties in the market.
The linear dependencies Λ(ρij,t) give information about the
connection between markets.

INREC 2022 — Statistical Methods 23 / 32



0.03125

0.12500

0.50000

2016 2018 2020 2022

S
ig

m
a

EUA Oil NGas Coal

INREC 2022 — Statistical Methods 24 / 32



−0.5

0.0

0.5

1.0

2016 2018 2020 2022

C
or

re
la

tio
n

EUA−Oil EUA−NGas EUA−Coal Oil−NGas Oil−Coal NGas−Coal

INREC 2022 — Statistical Methods 25 / 32



Discussion & Outlook
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Conclusion

For the log-prices cointegration is not important for
forecasting,
Leverage volatility modeling enhances performance,
Time varying dependence parameters also improve
multivariate forecast.
Leverage and skewness are also important.
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Since the beginning of the russian invasion of Ukraine,
volatility increases,
The linear dependence between EUA – NGas drops during the
beginning of the war,
The dependence relaxes shortly afterwards.
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Outlook

Repeat analysis in levels,
Use other transformations beforehand.
Consider other copula models (e.g. Vine copulas)
Use more/other data.
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