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HOW FORECASTING METHODS 
ARE SELECTED TODAY...
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HOW THEY COULD BE 
SELECTED...

Analysis of the input time series

Trained model selects most suitable 

forecasting model

Performing the forecast
LSTM
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TIME SERIES COMPONENTS

Trend

Seasonality

Saturating Growth
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Img.1: Exemplary time series
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SHORT-TERM FORECASTING METHODS

C O N F E R E N C E  P R E S E N T A T I O N

Well-performing benchmark methods (Ensafi 2022, Nguyen 2021)

Simple Statistical Methods

Complex Statistical Methods

Advanced Methods

• Multiple Linear Regression

• Prophet

• SARIMAX (Seasonal Auto-Regressive Integrated Moving Average X)

• Feedforward Neural Network

• Recurrent Neural Network (including Memory)

• Long Short-Term Memory (including Forget Function)
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MODEL SELECTION

C O N F E R E N C E  P R E S E N T A T I O N
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Img.2: Generalized procedure of a time series forecasting model selection 

(Based on: Talagala 2018, Smith-Miles 2009)
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RANDOM FOREST CLASSIFIER

C O N F E R E N C E  P R E S E N T A T I O N

Applied classification algorithm

Img.3: Exemplary decision tree (Meltzer, 2021)
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RANDOM FOREST CLASSIFIER II

C O N F E R E N C E  P R E S E N T A T I O N

Applied classification algorithm

Img.4: Generalized process of a random forest classifier (Meltzer, 2021)
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CASE STUDY

C O N F E R E N C E  P R E S E N T A T I O N

A meta-learning approach 

for short-term energy load, 

generation, and price forecasting
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INPUT DATA

C O N F E R E N C E  P R E S E N T A T I O N

Country with one bidding zone

Country with multiple bidding zones

Data unavailable

37 bidding zones of 28 European 

countries

Energy Time Series (ENTSO-E, 2022)

Weather Time Series (Copernicus, 2022)

• Day-Ahead Price

• Generation (Solar and Wind)

• Load

• Wind speed

• Solar irradiance

• Air temperature

Img.5:  Overview over available data per country
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INPUT DATA II

C O N F E R E N C E  P R E S E N T A T I O N

9 Time Frames x 37 Bidding Zones x 4 Energy Series Types - Missing Series

= 1026 Sample Time Series

2021

2019

Jan - Mar Apr Oct - Dec

Apr - Jun Jul Oct

Jul - Sep NovJan

2020

Img.6:  Selected time frames
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INPUT DATA III

C O N F E R E N C E  P R E S E N T A T I O N

Img.7:  Comparison of the sample time series
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METHODOLOGY - FEATURES

C O N F E R E N C E  P R E S E N T A T I O N

According to the methodology on slide 9.

• Count of timestamps

• Coefficient of variation of the endogenous variables

• Coefficient of variation of the hour and day-type averages

• Autocorrelation of the endogenous variables for the lags 1 and 24.

• Pearson Correlation between the endogenous and it's exogenous variables 

(First and second highest)

8 Time series features were used for the model selection:
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METHODOLOGY - FORECASTING METHODS

C O N F E R E N C E  P R E S E N T A T I O N

• 3 variants of Multiple Linear Regression (different availability of information)

• 3 variants of SARIMAX (different model parameters)

• 2 variants of Prophet (different availability of information)

• 2 variants of LSTM (high amount of cells vs. high amount of iterations)

10 Methods for day-ahead forecasts were used:

According to the methodology on slide 9.
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METHODOLOGY - RANDOM FOREST

C O N F E R E N C E  P R E S E N T A T I O N

Random Forest
(25.000 Trees)R2 Scores

Features

Features

Train Set

800 TS

Test Set

226 TS

Predicted

R2 Scores

Training Phase

Img.8:  Representation of the applied train and test procedure
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RESULTS - FORECASTING PERFORMANCE

C O N F E R E N C E  P R E S E N T A T I O N

Median R2 Scores:

1, SARIMAX (0,1,2|1,0,1|24) 0.583

2. Prophet ExoTime 0.577

3. SARIMAX (1,1,1|1,0,1|24) 0.572

[...]

8. MLR ExoTime 0.467

9. SARIMAX (2,0,1|2,0,0|24) 0.374

10. MLR Exo 0.089

SARIMAX

Prophet

MLR None*

LSTM
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Img.9:  Distribution of the best forecasting methods per time series type

*Cases where no forecasting method had sufficient accuracy (R2 Score <= 0)..
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RESULTS - MODEL SELECTION

C O N F E R E N C E  P R E S E N T A T I O N

62%

89%

Suggested model and best model match

Model with close-to-best accuracy suggested (ΔR2 < 0.05)

3% Model with far-from-best accuracy suggested (ΔR2 > 0.2)
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Result performance indicators as relative share of the test population.
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CONCLUSION
& OUTLOOK

C O N F E R E N C E  P R E S E N T A T I O N

• the  cho ice  o f  the  r ight  fo recast ing  method has  

a  h igh  impact  on  the  qua l i t y  o f  the  fo recast .

• t ime  ser ies  cons is t  o f  many  components  that  

are  essent ia l  when choos ing  a  fo recast ing  

mode l .

• with  the  he lp  o f  the  feature -based  forecast  

mode l  se lec t ion  f ramework ,  the  idea l  mode l  fo r  

energy  t ime  ser ies  can  be  pred ic ted  wi th  a  

promis ing  accuracy.
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• th ink ing  in  te rms  of  h igher  sca les ,  a  un iversa l ly  

app l i cab le  and  h igh ly  accurate  mode l  se lec t ion  

f ramework  cou ld  be  c reated .
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