

A meta-learning approach for short-term energy load, generation, and price forecasting

11th International Ruhr Energy Conference (INREC) Master Thesis, University of Applied Sciences Hamm-Lippstadt Sten Kramin

Sten Kramin, 2022

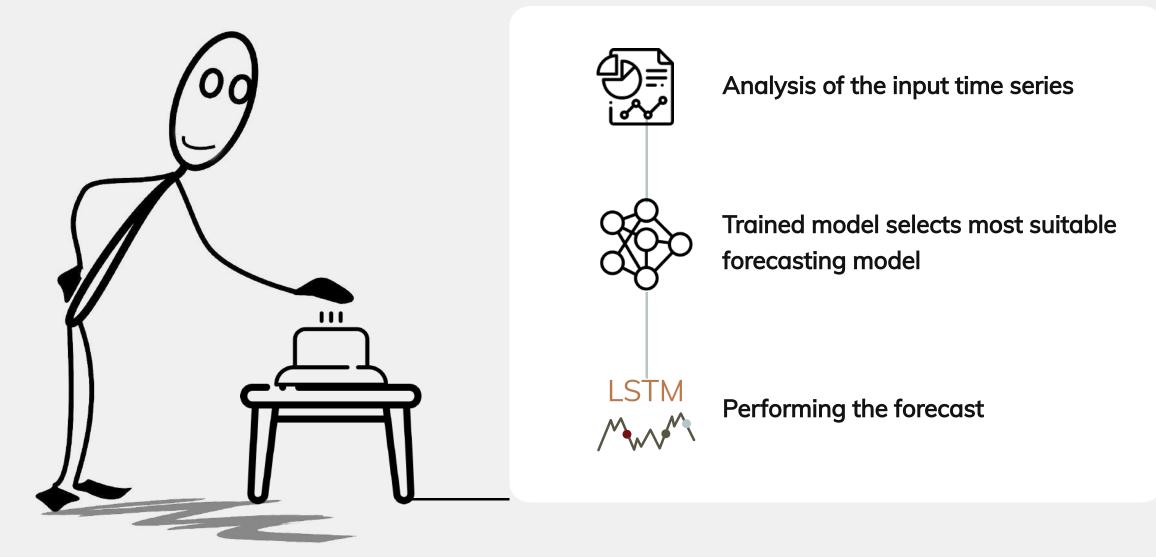
HOW FORECASTING METHODS ARE SELECTED TODAY...

\bigcirc				
		LSTM		
Y	Linear Regression	A	ARIMA	
	Reccurent Ne	ural Network	Deep AR	
	Moving Average	ing Average Exponential Smoothing		
Ň		N-BEATS SARIMAX		
	Prophet		Temporal Fusion Transformer	
		Temporal Fusion Transformer	Prophet	
		Multiple Linear Regression	Multiple Linear Regression CNN	
March 1			Prophet Recurrent Neural Network	

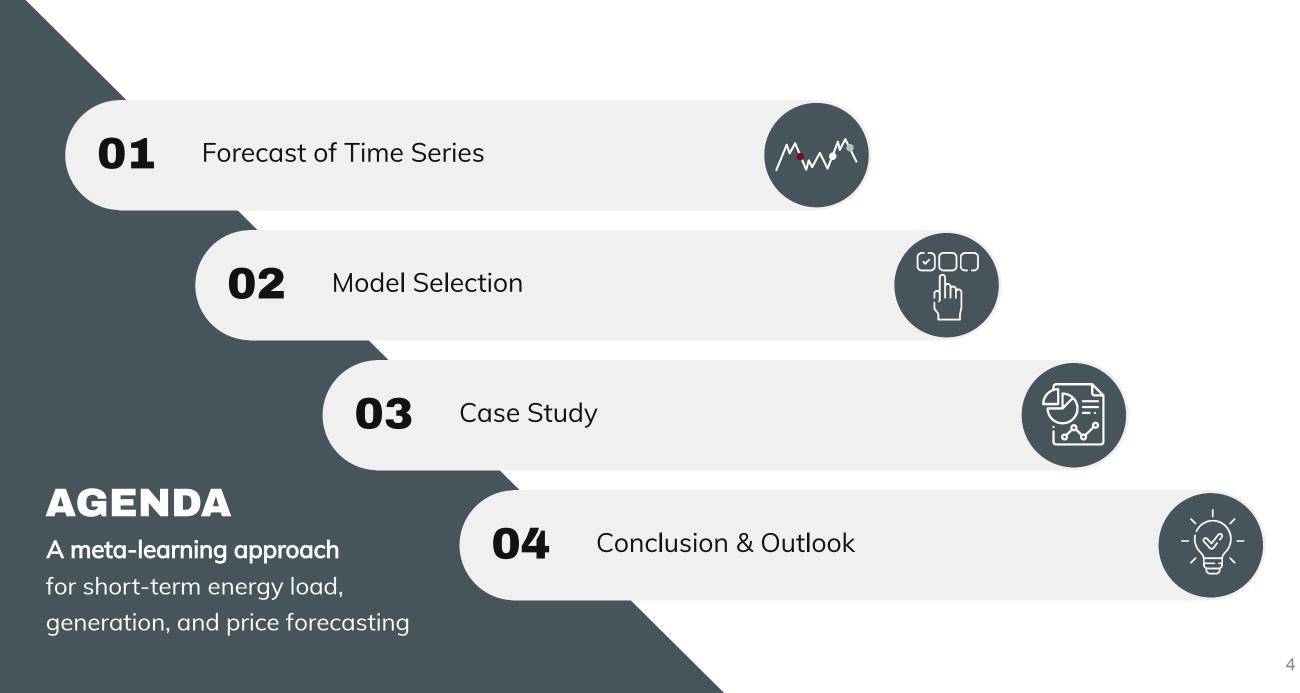
Sten Kramin, 2022

CONFERENCE PRESENTATION

HOW THEY COULD BE SELECTED...

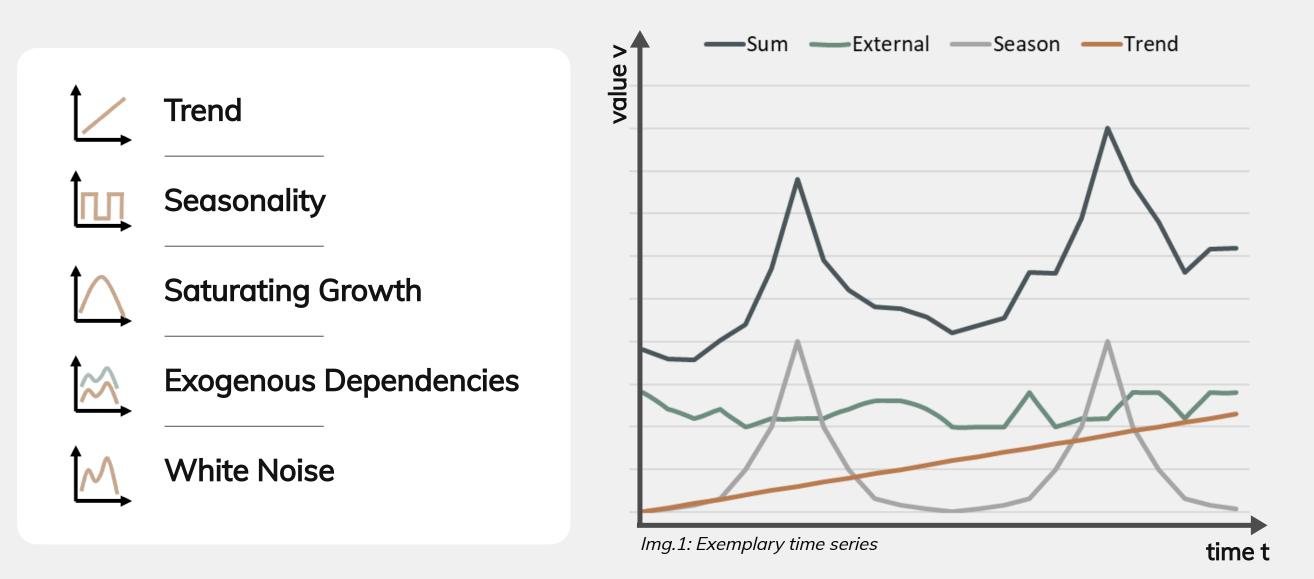


Sten Kramin, 2022



Sten Kramin, 2022

TIME SERIES COMPONENTS



SHORT-TERM FORECASTING METHODS

Well-performing benchmark methods (Ensafi 2022, Nguyen 2021)

Simple Statistical Methods

• Multiple Linear Regression

Complex Statistical Methods

- Prophet
- SARIMAX (Seasonal Auto-Regressive Integrated Moving Average X)

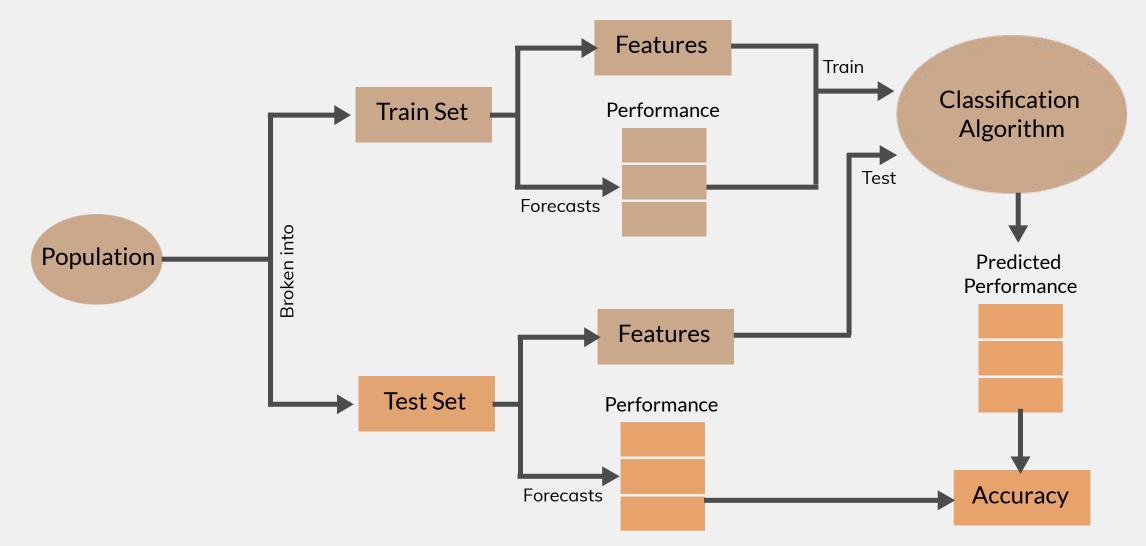
Advanced Methods

- Feedforward Neural Network
- Recurrent Neural Network (including Memory)
- Long Short-Term Memory (including Forget Function)

HOCHSCHULE HAMM-LIPPSTADT

Sten Kramin, 2022

MODEL SELECTION

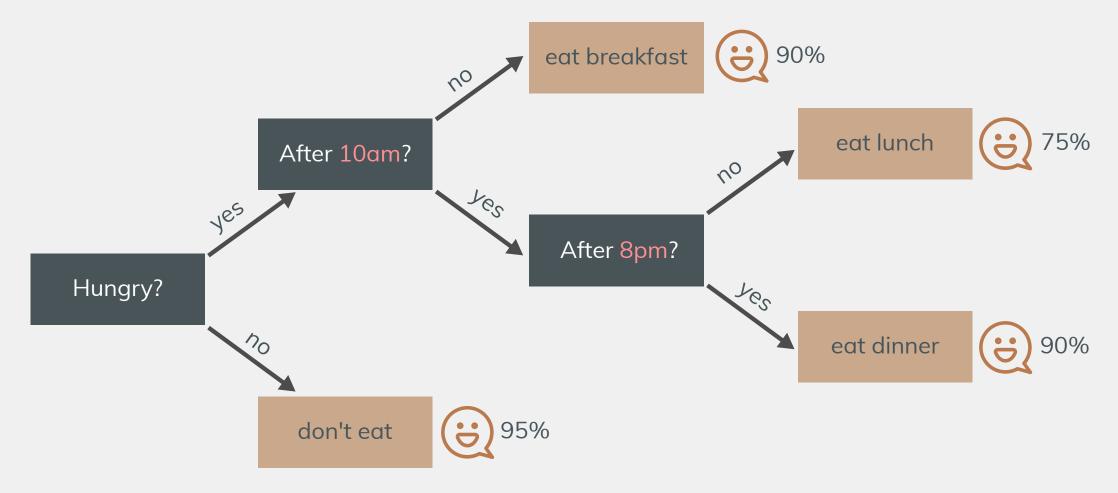


Img.2: Generalized procedure of a time series forecasting model selection (Based on: Talagala 2018, Smith-Miles 2009)

Sten Kramin, 2022

RANDOM FOREST CLASSIFIER

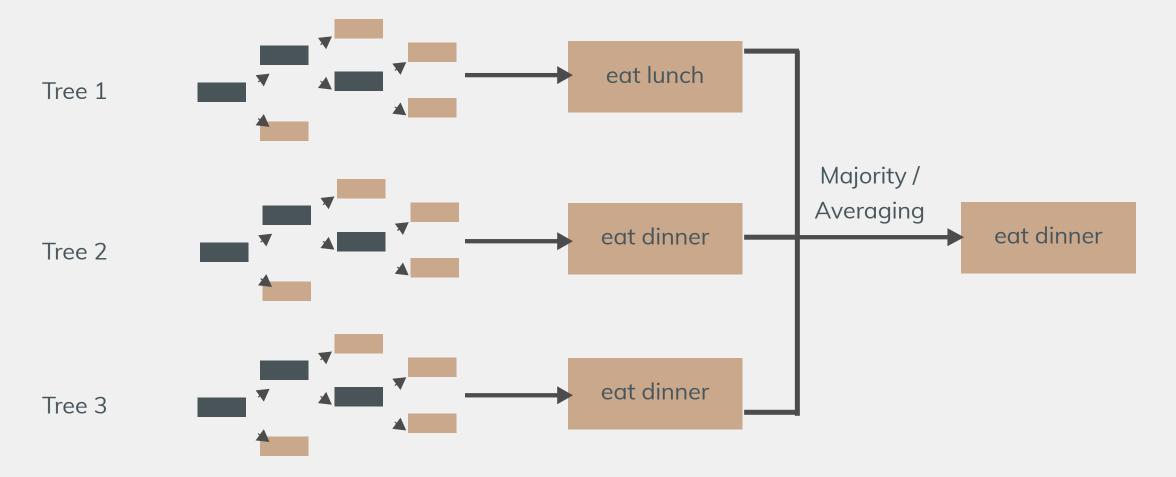
Applied classification algorithm



Sten Kramin, 2022

RANDOM FOREST CLASSIFIER II

Applied classification algorithm



Img.4: Generalized process of a random forest classifier (Meltzer, 2021)

Sten Kramin, 2022

CASE STUDY

A meta-learning approach for short-term energy load, generation, and price forecasting

Sten Kramin, 2022

INPUT DATA

Country with one bidding zone

WWW Country with multiple bidding zones

Data unavailable

37 bidding zones of 28 European countries

Energy Time Series (ENTSO-E, 2022)

- Day-Ahead Price
- Generation (Solar and Wind)
- Load

Weather Time Series (Copernicus, 2022)

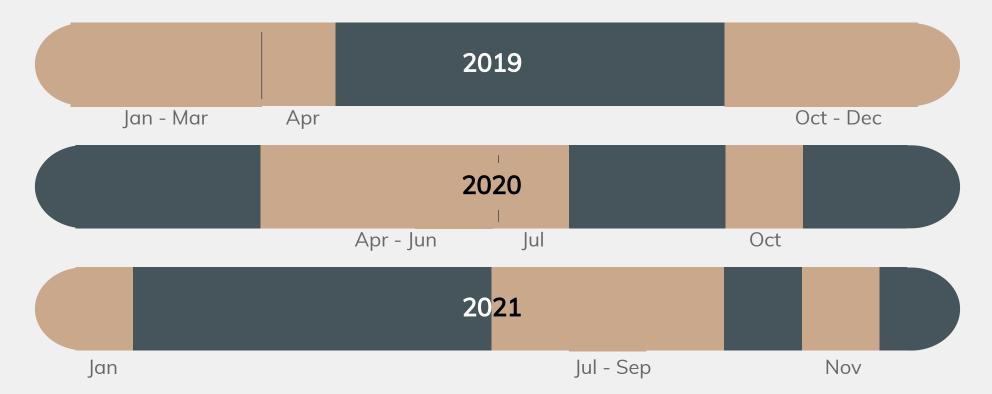
- Wind speed
- Solar irradiance
- Air temperature

Img.5: Overview over available data per country

Sten Kramin, 2022

INPUT DATA II

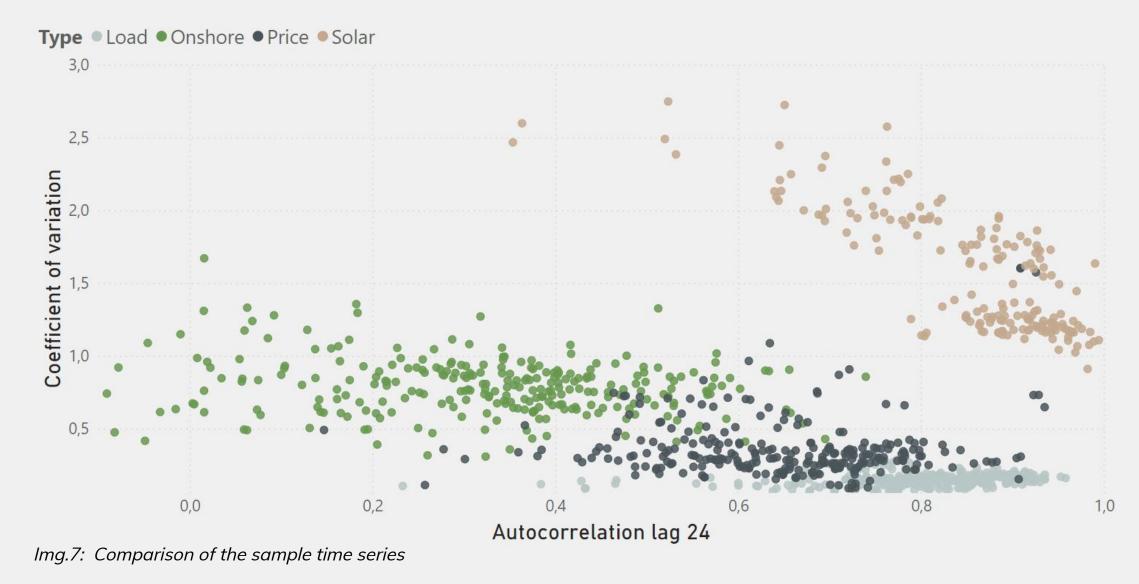
Img.6: Selected time frames



9 Time Frames x 37 Bidding Zones x 4 Energy Series Types - Missing Series = 1026 Sample Time Series

Sten Kramin, 2022

INPUT DATA III



Sten Kramin, 2022

METHODOLOGY - FEATURES

According to the methodology on slide 9.

8 Time series features were used for the model selection:

- Count of timestamps
- Coefficient of variation of the endogenous variables
- **Coefficient of variation** of the hour and day-type averages
- Autocorrelation of the endogenous variables for the lags 1 and 24.
- **Pearson Correlation** between the endogenous and it's exogenous variables (First and second highest)

METHODOLOGY - FORECASTING METHODS

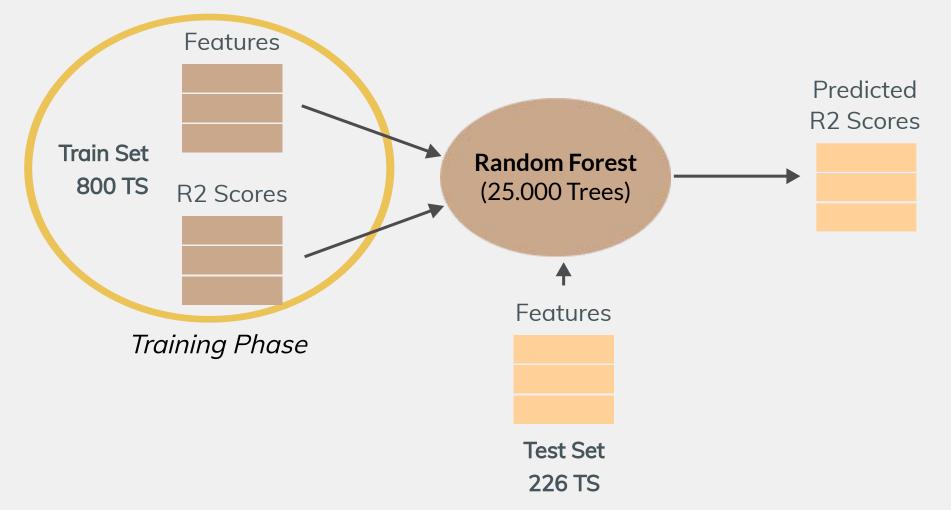
According to the methodology on slide 9.

10 Methods for day-ahead forecasts were used:

- 3 variants of Multiple Linear Regression (different availability of information)
- 3 variants of **SARIMAX** (different model parameters)
- 2 variants of **Prophet** (different availability of information)
- 2 variants of LSTM (high amount of cells vs. high amount of iterations)

Sten Kramin, 2022

METHODOLOGY - RANDOM FOREST



Img.8: Representation of the applied train and test procedure

RESULTS - FORECASTING PERFORMANCE

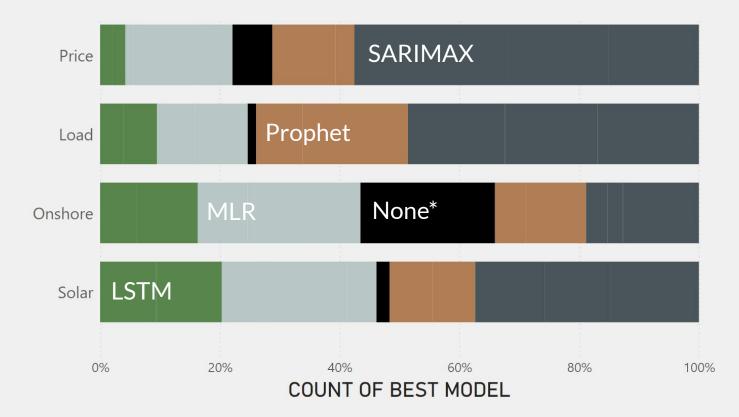
Median R2 Scores:

- 1, **SARIMAX** (0,1,2|1,0,1|24) 0.583
- 2. **Prophet** ExoTime 0.577
- 3. **SARIMAX** (1,1,1|1,0,1|24) 0.572

[...]

8. MLR ExoTime0.4679. SARIMAX (2,0,1|2,0,0|24)0.374

10. **MLR** Exo 0.089



Img.9: Distribution of the best forecasting methods per time series type

*Cases where no forecasting method had sufficient accuracy (R2 Score <= 0)..

Sten Kramin, 2022

HOCHSCHULE HAMM-LIPPSTADT

RESULTS - MODEL SELECTION

Result performance indicators as relative share of the test population.

Suggested model and best model match

Model with <u>close-to-best</u> accuracy suggested ($\triangle R2 < 0.05$)

Model with <u>far-from-best</u> accuracy suggested ($\triangle R2 > 0.2$)

CONFERENCE PRESENTATION Sten Kramin, 2022

- the choice of the right forecasting method has a high impact on the quality of the forecast.
- time series consist of many components that are essential when choosing a forecasting model.
- with the help of the feature-based forecast model selection framework, the ideal model for energy time series can be predicted with a promising accuracy.
- thinking in terms of higher scales, a universally applicable and highly accurate model selection framework could be created.

CONCLUSION & OUTLOOK

REFERENCES

Copernicus. "Climate and energy indicators for Europe from 1979 to present derived from reanalysis." (2022). *https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-energy-derived-reanalysis?tab=overview.*

- **Ensafi et al.** "Time-series forecasting of seasonal items sales using machine learning A comparative analysis." (2022). *International Journal of Information Management Data*.
- **ENTSO-E.** "Central collection and publication of electricity generation, transportation and consumption data and information for the pan-European market" (2022). *https://transparency.entsoe.eu/.*
- **Meltzer**. "What Is Random Forest?" (2021). *https://careerfoundry.com/en/blog/data-analytics/what-is-random-forest/*
- **Nguyen**. "End-to-End Time Series Analysis and Forecasting: a Trio of SARIMAX, LSTM and Prophet." (2021). *https://towardsdatascience.com/end-to-end-time-series-analysis-and-forecasting-a-trio-of-sarimax-lstm-and-prophet-part-1-306367e57db8.*
- **Smith-Miles.** "Cross-disciplinary perspectives on meta-learning for algorithm selection." (2009). ACM Computing Surveys (CSUR).
- **Talalga et al.** "Meta-learning how to forecast time." (2018). *https://www.monash.edu/business/ebs/our-research/publications/ebs/wp06-2018.pdf*