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Hierarchical time series

Definition
A hierarchical time series is a set of time series that naturally relate to each other,
i.e. sum up or break down, according to a certain logic.

Example
Sales broken down by region, where the sales in larger areas such as a country
(Total) must equal the sum of sales in smaller areas such as regions (A,B) within
that country, which in turn can be broken down into zones (AA, ..., BB).

Total

A

AA AB AC

B

BA BB
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Terminology
Lower levels add up to form the higher levels resulting in a hierarchy between
time series, e.g:

yt = yA,t + yB,t

yA,t = yAA,t + yAB,t + yAC ,t

The hierarchical relationship always holds for historical values; this property is
referred to as coherency.
Coherency is generally not given for individual forecasts, called base
forecasts, e.g:

ŷT+1 6= ŷA,T+1 + ŷB,T+1

Reconciliation methods are transformations of the individual forecasts by
which they are made coherent, i.e. it then holds that:

ỹT+1 = ỹA,T+1 + ỹB,T+1

Advantages of coherent time series: 1) aligning forecasts across organization
for decision-making, 2) reconciliation methods can increase forecasting
accuracy.
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Notation

Bottom level values are collected in bt (m × 1)

All values of the hierarchy are collected in yt (n × 1)

The summing matrix S (n ×m) is multiplied by bt and dictates how the
bottom-level series are aggregated to from each element of yt

Thus, any (linear) hierarchy can be summarized as:

yt = Sbt

yt
yA,t
yB,t
yAA,t
yAB,t
yAC ,t
yBA,t
yBB,t


=



1 1 1 1 1
1 1 1 0 0
1 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




yAA,t
yAB,t
yAC ,t
yBA,t
yBB,t
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Reconciliation - classical approaches
Bottom-up approach: uses the forecasts of the bottom-level values b̂T+1:

ỹT+1 = Sb̂T+1

Top-down approach: uses the forecast of the top-level value ŷT+1 from which the
bottom-level values b̂T+1 are generated by multiplying ŷT+1 with proportions:

b̂T+1 = pŷT+1

where p =
[
pAA . . . pBB

]′ (m × 1).

There are many ways to calculate proportions, e.g: the historical average of
the top-level to bottom-level ratio

pAA = 1
T

T∑
t=1

yAA,t
yt

Usually the best results are achieved by calculating proportions using the
forecasted ŷT+1 instead of historical values. However, the formula can
become quite complex, e.g:

pAA =
(

ŷAA,T+1
ŷAA,T+1 + ŷAB,T+1 + ŷAC ,T+1

)(
ŷA,T+1

ŷA,T+1 + ŷB,T+1

)
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Reconciliation - classical approaches

The results for the top-down approach using using forecasted values are
generally better because one make use of all the information at every level of
the hierarchy.

This key aspect of hierarchical forecasting is generalized via the mapping
matrix P (m × n), which constructs bottom-level values from the full vector
as bt = Pyt . Thus, every linear reconciliation method can be described as:

ỹt = SPŷt
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Reconciliation - classical approaches

For the top-down approach

PTD =
[
p Om×(n−1)

]
,

where O is a zero matrix. Hence, in our example:

ỹt
ỹA,t
ỹB,t
ỹAA,t
ỹAB,t
ỹAC ,t
ỹBA,t
ỹBB,t


︸ ︷︷ ︸

ỹt

=



1 1 1 1 1
1 1 1 0 0
1 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

S


pAA 0 0 0 0 0 0 0
pAB 0 0 0 0 0 0 0
pAC 0 0 0 0 0 0 0
pBA 0 0 0 0 0 0 0
pBB 0 0 0 0 0 0 0


︸ ︷︷ ︸

PTD



ŷt
ŷA,t
ŷB,t
ŷAA,t
ŷAB,t
ŷAC ,t
ŷBA,t
ŷBB,t


︸ ︷︷ ︸

ŷt
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Reconciliation - classical approaches

For the bottom-up approach PBU simply returns the bottom-level values:

PBU =
[
Om×(n−m) Im

]
Hence, in our example:



ỹt
ỹA,t
ỹB,t
ỹAA,t
ỹAB,t
ỹAC ,t
ỹBA,t
ỹBB,t


︸ ︷︷ ︸

ỹt

=



1 1 1 1 1
1 1 1 0 0
1 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

S


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

PBU



ŷt
ŷA,t
ŷB,t
ŷAA,t
ŷAB,t
ŷAC ,t
ŷBA,t
ŷBB,t


︸ ︷︷ ︸

ŷt
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Reconciliation - classical approaches

Total

A

AA AB AC

B

BA BB
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Reconciliation - classical approaches

Optimal (linear) reconciliation approach (minimum trace reconciliation):
it is possible to choose P such that the coherent forecasts ỹT+1 are
unbiased and minimize the variances of the coherent forecast errors
tr(V) = tr(Var [yT+1 − ỹT+1]):

Theorem
The minimum trace mapping matrix is:

POP = (S′W−1S)−1S′W−1

where W = Var [yT+1 − ŷT+1] is the variance-covariance matrix of the base
forecast errors.

Different approaches that vary in complexity exist for how to estimate W,
for example W = I or W = diag(Ŵ), where Ŵ is the estimated base error
variance-covariance matrix.
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Novelties

Our paper brings four novelties to the field of hierarchical forecasting:

1 We show that aggregated curves have an implicit hierarchical structure. We
show various methods of constructing and deconstructing the curves.

2 We introduce a new reconciliation approach tailored to aggregated curves
entitled aggregated-down, similar in complexity to top-down, which we
recommend to use as benchmark method alongside bottom-up and top-down.

3 We study minimum trace optimal reconciliation approaches for aggregated
curves in detail. This includes a result which states that under some
assumptions the reconciliation approach is independent of the representations
of the curve.

4 We apply all of these in an empirical setting to forecast the supply and
demand curves of day-ahead electricity price auctions. We conclude that
forecast accuracy can be improved through hierarchical reconciliation.
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Canonical representation

Every curve whose increments are well-defined can easily be aggregated or
disaggregated into marginal and cumulative values:

Note that the whole curve is a single observation in time, not a time series.
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Canonical representation
The curve can result from an aggregation procedure of the marginals, or we can
start with the curve and disaggregate to receive the bottom values.

There is a natural way of representation, which we refer to as the canonical
hierarchical structure of an aggregated curve:

an

an−1

. . .

a2

a1=
b1 b2 2.5 bn−1 bn
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Canonical representation - notation

Let b = (b1, . . . , bn)′ be the bottom-level values and their aggregation
a = (a1, . . . , an)′, where it holds that

ai =
i∑

j=1
bj .

and also the recursive relationship:

ai = ai−1 + bi for 1 ≤ i < n and a1 = b1.

We could also introduce the canonical representation starting from the aggregated
values a. Then, we can receive the same bottom values b by differencing:

bi = ai − ai−1.

b can be expressed as b = Dna where Dn is an invertible n-dimensional quadratic
matrix with a = D−1

n b.
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Canonical representation - notation
We can compactly write all values of the hieararchy as the (2n − 1)× 1 vector

y =
[
an . . . a2 b′

]′
which contains the values of a in the inverse order except for its first value a1 = b1.

For the considered canonical representation the summation matrix is:

S =
[

1n−1 Un−1
In

]
=



1 1 · · · 1 1
1 1 · · · 1 0
...

...
. . .

...
...

1 1 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1


.
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Alternative representations
Representations other than the canonical one for aggregated curves are possible.
We consider a situation where the aggregated values a are given and the scope is
to define a disaggregation rule to receive the bottom values b.

Let k be the element of a where from we start the disaggregation rule.
Let b[k] be an alternative bottom-values vector resulting from starting the
disaggregation from the kth element.
For k = 1, we disaggregate from the start, thus getting the canonical
representation, hence b = b[1]. It holds that

b[1],1 = b1 = a1, b[1],i = bi = ai − ai−1 for i > k.

For k = n, we disaggregate from the end. It holds that b[n],1 = an,
b[n],2 = an−1 − an, and in general

b[n],i = an−i+1 − an−i+2.

I This approach can be embedded in the canonical representation which
we receive by defining bi = b[n],n−i+1.
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Alternative representations
We can further consider the disaggregation starting at k with 1 < k < n with the
corresponding value b[k],k = ak . We then require two directions of aggregation, one
for bottom values larger than k, and the other one for smaller ones resulting in:

b[k],i =


ai , if i = k
ai − ai−1 , if i > k
ai − ai+1 , if i < k

The special cases b[1] (the canonical representation) and b[n] can be defined using
this definition as well.
Example
An n = 6-dimensional example for k = 1, 3, 6:

i 1 2 3 4 5 6
a ai 1 4 6 7 10 15

b[1] b[1],i 1 3 2 1 3 5
b[3] b[3],i -3 -2 6 1 3 5
b[6] b[6],i -3 -2 -1 -3 -5 15
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Alternative representations
The previous notations also generalize to include the canonical case as a special
case with:

The mapping matrix:

S[k] =

 On−k,k−1 1n−k Un−k
Lk−1 1k−1 Ok−1,n−k

In


where Lk−1 is a (k − 1)-dimensional matrix which contains 1 on the lower
anti-diagonal.
The vector y[k] in the corresponding hierarchy which satisfies y[k] = S[k]b is

y[k] =
[
a[−k]
b[k]

]
where we define a[−k] as the reversed vector a without the kth element,
i.e. a[−k] = (an, . . . , ak+1, ak−1, . . . , a1)′. For k = 1 we have y = y[k].
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Alternative representations
However, the different representations of the hierarchical structure are only formal
representations and do not automatically provide different reconciled forecasts by
themselves.

To see this we introduce b[k] = A[k]a with matrix A[k] which yields

y[k] = S[k]A[k]a.

For k = 1 we have A[k] = Dn from Slide 13.

In addition, with definition (20) there exists a matrix B[k] which satisfies

y = B[k]y[k].

It is easy to check that B[k] is orthogonal, i.e. it holds B−1
[k] = B′[k]. B[k] is a

generalized permutation matrix which contains permutation and reflection
components.

Finally, we receive with y = B[k]y[k], y[k] = S[k]A[k]a and a = D−1
n b that

y = B[k]S[k]A[k]D−1
n b. Thus, it holds that

S = B[k]S[k]A[k]D−1
n .
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Alternative representations - structure invariance
Recall that for optimal (minimum trace) reconciliation we have a mapping matrix
given a k:

P̃[k] = (S′[k]W
−1
[k] S[k])−1S′[k]W

−1
[k] .

We can show that under mild assumption of the forecast method and the
reconciling matrix W[k] that the reconciliation approach preserves the hierarchical
structure, i.e. the result does not depend on the choice of k:

Theorem
If ŷ = B[k]ŷ[k] and W−1

[k] = B′[k]W−1B[k] then it holds that

ỹ = B[k]ỹ[k].

B[k] is orthogonal, thus the assumption ŷ = B[k]ŷ[k] is satisfied if the forecasting
algorithm which provides ŷ is invariant to orthogonal transformations. This holds
for instance for linear regressions. Also W−1

[k] = B′[k]W−1B[k] is trivially satisfied if
W = I2n−1 due to orthogonality of B[k].

Thus, we will only be considering the canonical representation.
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Alternative representations - structure invariance proof
Proof.
Consider ỹ = SPŷ . With definition of P and S = B[k]S[k]A[k]D−1

n it holds with
the assumptions of the Theorem that:

ỹ = S(S′W−1S)−1S′W−1ŷ

= B[k]S[k]A[k]D−1
n
(
(B[k]S[k]A[k]D−1

n )′W−1B[k]S[k]A[k]D−1
n
)−1

(B[k]S[k]A[k]D−1
n )′W−1ŷ(D−1

n )′A′[k]S′[k]B′[k]W−1

= B[k]S[k]A[k]D−1
n

(
DnA−1

[k] (S′[k]B′[k]W−1B[k]S[k])−1(A−1
[k] )′D′n

)
(D−1

n )′A′[k]S′[k]B′[k]W−1ŷ
= B[k]S[k](S′[k]B′[k]W−1B[k]S[k])−1S′[k]B′[k]W−1B[k]ŷ[k]

= B[k]S[k](S′[k]W
−1
[k] S[k])−1S′[k]W

−1
[k] ŷ[k]

= B[k]ỹ[k].
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Classical approaches
With the canonical hierarchical structure of aggregated curves, the formulas for the
classical approaches are as follows:

Bottom-up approach: PBU =
[
On×(n−1) In

]
Top-down approach:

PTD =
[
p On×(2n−2)

]
p = (p1, . . . , pn)′
Average ratio: p̂ar,j = 1

T
∑T

t=1
bj,t
an,t

Ratio of averages: p̂ra,j =
1
T

∑T
t=1

bj,t

1
T

∑T
t=1

an,t

Forecasted values:

p̂fo,j =


b̂n

ân−1+b̂n
, for j = n

b̂j

âj−1+b̂j

∏n−1
i=j

(
âi

âi +bi+1

)
for 1 < j < n,∏n−1

i=1

(
âi

âi +bi+1

)
for j = 1.
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Classical approaches
Optimal reconciliation (minimum trace) approach:

I Recall that the optimal mapping matrix that returns the best, unbiased
coherent forecasts is given by

Pop = (S′W−1S)−1S′W−1

where W = Var[y − ŷ ] is the variance-covariance matrix of the base
forecast errors. The equation is the result of minimizing the variance of
the coherent forecasts.

I W is not known and has to be estimated, for which we consider multiple
estimators:

1 Wopols = I2n−1, where I2n−1 is the identity matrix.
2 Woplambda = Λ, Λ = Diag(S1n), S is the summation matrix and 1n is a unit

vector of the same dimension as the number of bottom-level time series. In
out aggregated curves setting it holds that
Diag(Λ) = S1n = (n, n − 1, . . . , 2, 1, 1, . . . , 1)′.
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Classical approaches

3 Wopwls = Ŵdcov, where Ŵdcov is an estimator for Wdcov = Diag(Wcov) with
Wcov as the covariance matrix of the errors associated to y . Wcov can be
estimated by the sample covariance Ŵcov , i.e. Ŵcov = 1

n E′E = 1
n
∑n

i=1 eie′i
and E is the matrix of residuals generated by and arranged in the same order
as the base forecasts. The Wopwls approach may be regarded as a
generalization of the Woplambda approach. The design corresponds to a
setting where the individual forecast errors have different variances but are
uncorrelated.

4 Wopcov = Ŵcov, where Wcov is the full sample covariance matrix of the error
terms. The underlying setting corresponds to a situation where the forecasts
errors have varying variances and exhibit linear dependence.
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Classical approaches
5 Wopshrink = λŴdcov + (1− λ)Ŵcov, where λ is the shrinkage intensity

parameter. propose to set

λ =
∑

i 6=j V̂ar(r̂ij)∑
i 6=j r̂2

ij
,

where r̂ij is the ijth element of the 1-step-ahead sample correlation matrix.
The authors implemented the formulas in the corpcor R package;

6 Ledoit-Wolf covariance matrix estimator with shrinkage towards constant
correlation: Wopledoitwolf = δF + (1− δ)Ŵcov, where Ŵcov is the sample
covariance matrix, F is the shrinkage target with constant correlation defined
with element fij = r̄

√
ŵii ŵjj on the ith row and jth column, ŵij is the

corresponding element of Ŵcov, and

r̄ = 2
(N − 1)N

N−1∑
i=1

N∑
j=i+1

rij , rij = ŵij√
ŵii , ŵjj

.
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Classical approaches

7 Covariance matrix estimation using graphical lasso:

Wopglasso =
[
W11 w12
w ′12 w22

]
,

where Wopglasso is partitioned as shown and estimated by using coordinated
descent to solve

βopglasso = argminβ

{
1
2‖W

1/2
11 β − b‖2 + ρ‖β‖1

}
,

where b = W−1/2
11 ŵ12. The optimal β is used to generate the optimal

w12 = W11βopglasso. Initially, Wopglasso is set to W = Ŵcov + ρIn. We used
the algorithm as implemented in the glasso R package.
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Aggregated-down approach
We introduce a new reconciliation method called aggregated-down similar in
complexity to bottom-up and top down.

It is essentially a localized top-down approach, where the disaggregating
proportions are calculated based on the node above and not based on the top-most
aggregated level.

Motivation: proportions calculated using values that are closer in the hierarchical
structure should be more accurate than when using values that are further away.

We denote the corresponding disaggregating proportions by qj with
q = (q1, . . . , qn)′ being the vector of proportions. The mapping matrix is defined as

PAD =
[
Q On×(n−1)

]
,

where Q = Antidiag(q) is a n × n anti-diagonal matrix with the elements on the
anti-diagonal, starting from top to bottom, i.e.

Q =


0 . . . 0 q1
0 . . . q2 0
...

...
. . .

...
qn 0 . . . 0

 .
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Aggregated-down approach

Hence the bottom-level values are obtained as:

PADŷ =


0 . . . 0 q1 0 . . . 0
0 . . . q2 0 0 . . . 0
...

...
. . .

...
... . . .

...
qn 0 . . . 0 0 . . . 0





an
an−1
...

a2
b1
...

bn


We require that q1 = 1 every time which corresponds to b̃1 = b̂1.
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Aggregated-down approach

an

an−1

. . .

a2

a1=
b1 b2 2.5 bn−1 bn
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Aggregated-down approach

Analogous to the top-down approach the proportions for aggregated-down can be
estimated in various ways:

PAD =
[
Qn×n On×(n−1)

]
Qn×n = Antidiag(q) = Antidiag((q1, . . . qn)′)
q1 = 1
Average ratio: q̂ar,j = 1

T
∑T

t=1
aj,t−aj−1,t

aj,t
= 1

T
∑T

t=1
bj,t
aj,t

Ratio of averages: q̂ra,j =
1
T

∑T
t=1

aj,t−aj−1,t

1
T

∑T
t=1

aj,t
=

1
T

∑T
t=1

bj,t

1
T

∑T
t=1

aj,t

Forecasted values: q̂fo,j = âj−âj−1

âj
for j > 1,
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Aggregated-down approach - simulation
We provide a simulation study to support the idea of closeness, i.e. proportions
calculated using values that are closer in the hierarchical structure should be more
accurate due to avoidance of error aggregation.

Simulation study design:

We simulated VAR(1) processes for the bottom-level values. We replicated the
simulation 1000 times for each combination of the parameters:

Number of historical observations (N) N ∈ {16, 64, 256}
Number of bottom-level values (n) n ∈ {4, 16, 64}
Coefficient matrix (Φ) Φ = aIn for a ∈ {0.2, 0.5, 0.7, 0.95}
Error variance-covariance matrix (A) A = In

We also considered the case of correlated errors with the variance-covariance matrix
A = 0.3In + 0.711′ in combination with the coefficient matrix Φ = 0.7In.

We generated the aggregated values from the bottom-level simulations and fitted
an AR(1) process without intercept for each level of the hierarchy. We calculated
the forecast accuracy from 1-step-ahead forecasts for each level via RMSE.
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Aggregated-down approach - simulation
Simulation study results:

n 4 16 64
N 16 64 256 16 64 256 16 64 256

BASE 1.403 1.388 1.322 2.241 2.268 2.239 4.335 4.126 4.152
BU 1.403 1.394 1.320 2.252 2.260 2.238 4.321 4.117 4.148

TDFO 18.039 8.070 1.615 55.658 99.499 74.052 24155.015 1606.731 605.168
ADFO 1.418 1.390 1.323 2.260 2.271 2.240 4.347 4.129 4.153

OPOLS 1.390 1.386 1.321 2.228 2.265 2.239 4.326 4.125 4.152
OPWLS 1.387 1.386 1.321 2.215 2.261 2.238 4.295 4.118 4.150

OPLAMBDA 1.386 1.387 1.321 2.213 2.261 2.238 4.293 4.118 4.150
OPSHRINK 1.394 1.388 1.321 2.230 2.266 2.239 4.349 4.132 4.155

We left out the results for historical proportion calculations since they were
always vastly inferior to the base case.
The aggregated-down approach using forecasted values is very similar to the
other methods, even optimal ones.
The top-down approach using forecasted values is markedly inferior in the
considered setups.
The accuracy decreases as more bottom-levels (n) are added, as expected.
However, with the top-down approach this is disproportionally the case. We
believe this to be due to the effect of error aggregation.
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German day-ahead electricity market
The European day-ahead electricity is a daily, blind auction market where
electricity prices for each hour of the next day are determined.

The auction closes at 12:00 CET of each day, up until when the market
participants can submit buy (bid) and sell (ask) orders for each hour of the
next day.

These bids are the volumes that buyers are willing to buy and that producers
are willing to sell at certain prices.

For the considered time range of data, bid volumes can be specified for prices
ranging from -500 EUR/MWh up to 3000 EUR/MWh with an increment of
0.1 EUR/MWh (since 2022-05-11 the upper price limit was increased to 4000
EUR/MWh).

After gate closure, the volumes bid across all participating countries are
aggregated and unique prices and volumes are generated for each separate
market area.

The market clearing results along with 24 supply and demand curves are
published shortly after gat closure at 12:00 CET.
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German day-ahead electricity market
All major relevant aspects are illustrated in the figure below: Hourly price
time series with supply and demand curves, volumes and power production.
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The X-Model
The X-Model introduced by F. Ziel and R. Steinert forecasts day-ahead
electricity prices as the intersection of supply and demand curves.
Prices are grouped into price classes, thus reducing the dimensionality of the
curves, e.g. from 350001 prices to ca. 40 price classes (ca. 20 per curve).
The prices are split into price classes by inverting the supply and demand
curves at a pre-specified grid of equidistant volumes.
Thus the 40 marginal bids represent the sum of bids within their price range:
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The X-Model
The hourly bids are aggregated to produce the day-ahead supply and demand
curves. The price classes which approximate the curves by ca. 20 points each
are also shown.
The characteristic step-like appearance of the curve is the result of the many
zero-volume prices.
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The X-Model - Model setup

Model Setup:

The response variable is the sum of the volume within a price class, modeled
separately for every hour and class. For 40 price classes, a total of 40× 24
regressions have to be done to forecast curves for all hours of the next day.

In the original X-Model paper,each price class volume was modeled marginally,
i.e. the supply and demand curves were generated by cumulatively summing
up the forecasted values. This is equivalent to using bottom-up reconciliation
approach.

In our paper, we extended this and modeled both the marginal and
cumulative responses and use them to compare and contrast the different
reconciliation approaches.
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The X-Model - Model setup

To model the responses, we used a combination of autoregressive and external
regressors.

Let then X (c)
S,d,h and X (c)

D,d,h be the supply and demand volumes at day d and
hour h of price class c of the price classes generated for the supply and
demand curves. These will constitute the bulk of the regressor matrix as each
price class volume will depend on its lags according to a specific lag structure.

Let the external regressors be denoted by X (1)
X ,d,h, . . . ,X

(MX )
X ,d,h for a total of MX

external regressors, and consist of prices for coal, gas, oil and CO2 emissions
(EUAs), the day-ahead prices and volumes of the previous day, as well as the
day-ahead forecasts for the country-wide load, solar, onshore wind, and
offshore wind production. The day-ahead data was taken from
www.epexspot.com and the forecasts from www.entsoe.eu.
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The X-Model - Model setup

Let MS and MD be the number of price classes for the supply and demand
curve respectively.

All regressors can be compactly written as

Xd,h = (X1,d,h, . . . ,XM,d,h)′ =
((

X (c∈CS )
S,d,h

)
,
(

X (c∈CD)
D,d,h

)
,
(

X (c∈CX )
X ,d,h

))′
,

where CS and CD is the set of price classes for the supply and demand side
respectively, CX is the set of external regressors CX =

{
X (1)

X ,d,h1, . . . ,X
(MX )
X ,d,h

}
,

and M = MS + MD + MX .

To capture the weekly seasonality, we also included dummy regressors for
every day of the week. Let these be denoted by a function Wk(d) that returns
the day of the week of day d .
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The X-Model - Model setup

The full model can be written out as

Xm,d,h =
M∑

k=1

24∑
j=1

∑
k∈Im,h(l,j)

φm,h,l,j,kXl,d−k,j +
7∑

k=2
ψm,h,kWk(d) + εm,d,h,

for m ∈ {1, . . . ,MS + MD} and Im,h(l , j) represents the sets of possible lags,
which we defined as

Im,h(l , j) =


{1, . . . , 30}, for m = l and h = j
{1, . . . , 8}, for (m = l and h 6= j) or (m 6= l and h = j)
{1}, for m 6= l and h 6= j

.

We fitted the models using LASSO as implemented in the glmnet R package.
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The X-Model - Data & results

Data:

We conducted a day-ahead rolling window forecasting study for each day
between 2019-01-01 and 2019-06-30.

We used a rolling window length of 730 = 2× 365 days to forecast each day.

The price classes were generated once for the first day-ahead forecast using
the 2017 and 2018 data, and were kept constant throughout the study.

All data were hourly except for coal, gas, oil, and EUA prices which were daily.

We used marginal values as regressors to forecast the marginal values b̂i and
cumulative values as regressors to forecast the cumulative values âi .
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The X-Model - Data & results

To measure the forecasting accuracy we used the mean absolute errors
(MAEs)

MAE test
m = 1

24 ·#(D)
∑
d∈D

23∑
h=0
|Xm,d,h − X̂m,d,h|

and the root mean square errors (RMSEs)

RMSE test
m = 1

#(D)
∑
d∈D

√√√√ 1
24

23∑
h=0

(Xm,d,h − X̂m,d,h)2

where D is a set containing all 181 forecasted days, #(·) is a function that
returns the number of elements in a set, and X̂m,d,h represents the respective
forecasted value.
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The X-Model - Data & results
Results:

Results for the top-down and aggregated-down approaches using historical
proportions were not included due to very high inaccuracy compared to the
base case. MAE:
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The X-Model - Data & results
Results for the top-down and aggregated-down approaches using historical
proportions were not included due to very high inaccuracy compared to the
base case. RMSE:
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The X-Model - Data & results

Aggregated-down using forecasted values yields better results than the
bottom-up case on average

Aggregated-down is superior to bottom-up and top-down when using
forecasted values for the proportions.

For the Supply curve: no approach consistently yielding the lowest errors. The
optimal WLS reconciliation approach yielded the lowest errors for the largest
number of classes, followed by the shrinkage and lambda approaches.

For the Demand curve: the results were consistent for all classes with the
lowest errors achieved by the optimal shrinkage reconciliation approach.
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Conclusion

We discussed the hierarchical structure of aggregated curves and different
representations.

We presented a number of reconciliation methods including established
bottom-up, top-down, and minium-trace optimal reconciliation approaches in
an aggregated curves setting

We introduced a new aggregated-down approach which has a methodological
complexity comparable to the bottom-up and top-down approaches.

We provided theoretical insights that under mild assumptions on the
forecasting and reconciling method, the reconciling result is independent of
the representation of the curve.

The approaches were then applied in a simulation study and for forecasting
supply and demand curves of the German day-ahead electricity market.

We showed how the considered reconciling approaches for aggregated curves
can improve the forecasting accuracy compared to standard approaches.
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Conclusion
The results show that there is not a single reconciliation method to
outperform the others every time.

The optimal reconciliation approaches, more specifically the shrinkage, WLS,
and lambda approaches, showed to have the best results most of the time,
yielding considerable improvements compared to the bottom-up base case.
Which reconciliation method mostly improves a forecast will likely be specific
to the data.

We see potential in considering multiple methods since even simple
approaches such as aggregated-down with forecasted values yield
improvements at certain points of the curve compared to the bottom-up
approach, which is current state-of-the-art.

We conclude that it is worth using the aggregated-down approach as a simple
benchmark method superior to top-down.

We conclude that it is important to have access to all base forecasts in order
to calculate the proportions since these lead to substantial improvements in
forecasts in contrast to using only historical values.
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Conclusion

Our study could further be extended by including more recent approaches,
such as machine-learning-based and conditional coherency reconciliation
methods.

Averaging or usage of different reconciliation approaches for each point of the
aggregated curve could also be considered, especially if coherency is not
necessary.
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