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Introduction: how to choose the best model ?

Practical needs
I The model must reproduce the main characteristics of prices;
I The model must be simple enough to be used in practice;
I The model must have a calibration method.

Two sources of information
I The Observed data (their value, their volatility...);
I The Expertise (practical knowledge of how the price is built).

All models are wrong!
The choice of (the class of) model is mainly driven by the targeted application:

I Why do we need a model ?
I Which constraints due to the model choice ?

One particular context: finance
I Implies specific constraints on the model,
I Needs the modelling on futures prices as well as spot prices.
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Taxonomy of modelling approaches and their applications

Applications:
Risk management
Pricing contracts /
derivatives

Source : R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of
Forecasting 30(4): 1030-1081, 2014.
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Survey on electricity price models for risk management purposes

Objectives
Give an (as) exhaustive (as possible) review on all the existing approaches to depict electricity
prices for financial risk management purposes;

Propose a classification based on practical questions;

Unify the notation to ease the understanding and possible comparisons.
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Proposed classification

Classification related to the expected behaviour of prices
Gaussian factor models in which the uncertainty is modeled by Brownian motions;

Models to represent price spikes which are by far the most numerous with a wide variety of
approaches;

Stochastic volatility models which are a classical extension of Gaussian factor models;

Multidimensional models that seek to represent a set of prices in which one is the price of
electricity;

Structural models which can naturally be seen as multidimensional models, but in which the link
between variables is represented by complex functions linked to market fundamentals.
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Around 170 papers: 135 journal papers, 5 conference papers, 15 book
chapters and 14 unpublished papers)

(a) (b)

Figure: Evolution by year of the cumulative number of papers in electricity price modeling for risk management:
(a) global view and (b) view by model family.
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Key notation

Key notation
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Relationship between spot prices and forward products with delivery (FPDs)

Notation
I St : spot price quoted at date t
I Ft(T1,T2) : forward contract (FPD) quoted at date t, delivering 1MWh of power for all hours

between T1 and T2

Key link: curve of unitary forward contract (Forward curve)
I unitary forward price: ft(T ) = Ft(T ,T + 1h): forward price quoted at date t, for delivering 1MWh of

power at maturity T .
I forward curve (ft(T ))T≥t

Observed contracts from unitary forward prices
I Spot price as a limit: St = limT→t ft(T )
I Forward contracts by no-arbitrage: Ft(T1,T2) =

∫ T2
T1

w(s)ft(s)ds
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Example
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Gaussian factor models

Gaussian factor models
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Schwartz-type models and the convenience yield approach
Model 1 factor 2 factors 3 factors

[Schwartz,
1997]

d lnSt = α(β− lnSt)dt +σdWt

dSt

St
= (µ− δt)dt + σ1dW

1
t

dδt = α(β − δt)dt + σ2dW
2
t

dSt

St
= (rt − δt)dt + σ1dW

1
t

dδt = α(β − δt)dt + σ2dW
2
t

drt = κ(µ− rt)dt + σ3dW
3
t

[Gibson and
Schwartz,

1990]

-
d lnSt = (µ− δt)dt + σ1dW

1
t

dδt = α(β − δt)dt + σ2dW
2
t

-

[Schwartz
and Smith,

2000]

-

ln St = X 1
t + X 2

t

dX 1
t = −α1X

1
t dt + σ1dW

1
t

dX 2
t = µdt + σ2dW

2
t

-

[Lucia and
Schwartz,

2002]

Pt = St or Pt = ln St

Pt = Λ(t) + Xt

dXt = −αXtdt + σdWt

Pt = St or Pt = ln St

Pt = Λ(t) + X 1
t + X 2

t

dX 1
t = −αX 1

t dt + σ1dWt

dX 2
t = µdt + σ2dWt

-
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Heath-Jarrow-Morton (HJM) models
Principles of interest rates models [Gabillon, 1991, Benth and Koekebakker, 2008]:

dft(T )

ft(T )
=

N∑
i=1

σn(t,T )dW n
t (1)

Most commonly used in practice : multi-factor HJM with exponential volatility
[Clewlow and Strickland, 1999, Manoliu and Tompaidis, 2002, Diko et al., 2006,
Kiesel et al., 2009, Edoli et al., 2013, Kremer et al., 2020]

dft(T )

ft(T )
=

N∑
i=1

σne
−αn(T−t)dW n

t (2)

I Able to represent the Samuelson effect,
I Classic methods to calibrate the model [Kiesel et al., 2009, Edoli et al., 2013,

Féron and Daboussi, 2015, Féron et al., 2019, Guerini et al., 2020, Fabbiani et al., 2021],
I Lots of analytical formulas for derivatives (Call options...),
I Recent work [Féron and Gruet, 2020] shows that the optimal number of factors to represent futures

prices in the Western European countries is N = 5 (according to Bayesian Information Criterion).
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Gaussian factor models

Gaussian factor models are the simplest models
I in terms of the (Gaussian) representation of the uncertainty,
I in terms of getting simple and analytical formulas for risk management applications (option values,

greeks...);

They often offer the possibility to access to classic calibration procedures;

There is a wide range of literature (both in energy markets and on interest rate models) studying
this class of models;

They are still the preferred models for practitioners;

The main drawback is the difficulty, if not impossibility, to model spikes.
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Modelling spikes

Modelling spikes
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Spikes in electricity prices

Johnson and Barz (99) state as early as 1999 the need to represent positive and negative jumps as
fundamental characteristics of the prices observed in the electricity markets of California, Australia,
and Scandinavia;
More than 100 articles in the literature talk about the objective of modelling spikes;
Price spikes are often related to the non-storability of electricity and events of very high tension in
the system, followed by a very quick return to equilibrium;
Modelling price spikes is very important for the pricing and financial management of “peak power
plants” (Out-of-the-money Call option).

Most classical approach to depict electricity spikes
Same as in classical finance: replace Brownian motions by more general Lévy processes
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Lévy processes for electricity spikes modelling

Simple idea: replace Brownian motion W by Lévy process L:

Pt = Λ(t) +
N∑

n=1

X n
t ,

dX n
t = −αnX

n
t dt + dLnt ,

(3)

I Lots of papers study this class of models (calibration procedures, futures and derivatives pricing,
hedging complex contracts...) [Benth et al., 2007, Benth et al., 2008, Hess, 2014, Hess, 2017];

I Needs of high level of Mathematics.

Most popular classes of Lévy processes used:
I Compound Poisson processes [Johnson and Barz, 1999, Deng, 2000, Cartea and Figueroa, 2005,

Pawłowski and Nowak, 2015, Deschatre et al., 2018];
I Normal Inverse Gaussian processes

[Benth and Šaltytė Benth, 2004, Collet et al., 2006, Goutte et al., 2014, Benth and Schmeck, 2014].
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Other way to depict spikes: regime switching models

[Deng, 2000, Kholodnyi, 2005, Bierbrauer et al., 2007, Kholodnyi, 2004, Kholodnyi, 2008,
Janczura, 2014]

Main principle of regime switching models: use a (hidden) state variable that describes
the “state” of the system

I A specific state is built to define the “spike” state: the value of the price must be high,
I One or several states represent more normal conditions,
I Some papers add a state for negative prices;

Easy way to depict extreme events;

Possibility to define the change in state depending on exogenous variables (weather, electricity
consumption, renewable production...);

but, still difficult to compute futures and derivatives prices.
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Multidimensional models

Multidimensional models
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Global idea of multidimensional models

Assets are often exposed to several markets
I (simplified) Financial vision of a power plant:(

Spower
t − hS fuel

t − h′SC02
t

)+

, ∀t ∈ [0 ; T ] (4)

I Interconnection line between two markets A and B(
SA
t − SB

t

)+

+
(
SB
t − SA

t

)+

, ∀t ∈ [0 ; T ] (5)

=> need to define a joint model for all the risks of the asset
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Multidimensional models

Correlation model: just duplicate the one-dimension model for each risk and consider (estimate)
a correlation coefficient between the Brownian motions [Deng et al., 2001]

dF d
t (T )

F d
t (T )

= µddt + σddW d
t , d = 1, 2,

Coupling factor models: use a common factor in the dynamics to depict a common behaviour
[Frikha and Lemaire, 2013]

S1
t = Λ1(t) + X 1

t + Zt ,

S2
t = Λ2(t) + X 2

t + Zt ,
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Multidimensional models

Cointegration models: stationary representation of a linear combination of two processes,
although the individual depiction of each process is non-stationary

I Nakajima and Ohashi [Nakajima and Ohashi, 2012] generalized the Gibson and
Schwartz [Gibson and Schwartz, 1990] model with cointegration:

d log(Sd
t ) =

(
r −

σ2
Sd

2
− δdt + bdzt

)
dt + σSd dW

Sd

t ,

dδdt = αd

(
µd − δdt

)
dt + σδd dW

δd

t ,

for d = 1, . . . ,D, all the Brownian motions were correlated and zt a (stationary) error correction term
related to cointegration, designed as a linear combination of the log(Sd

t ).
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Structural models

Structural models
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Global principle of structural models

Proposed definition (and properties) of structural model
I the spot price is written as a function of fundamental variables;
I this function aims at reproducing the way the spot price is calculated, that is, by reproducing the

principles of a balance between supply and demand;
I and the variables used are observable and their model is calibrated with observed data.

Structural models can be embedded into other classes:
I Structural models are using Gaussian factors to represent the fundamental variables. The (complex)

function to build spot prices allows to depict spikes,
I Structural models are, by construction, multidimensional models;

In appendix: table summarizing all the structural models developed in the literature;

Most important work: [Carmona et al., 2013, Aïd et al., 2009, Aïd et al., 2013] .
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Structural model: price as the marginal cost [Aïd et al., 2009]

Variables
I n fuels, 1 ≤ i ≤ n
I Dt demand (in MW)
I C i

t production capacities (in MW)
I S i

t fuel prices (in e/MWh)
I hi heat rates (hiS i

t in e/MWh, increasing with i)

Principle
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Structural model: price as the marginal cost [Aïd et al., 2009]

Summarizing:

St =
n∑

i=1

hiS
i
t1Dt∈I it

with I it =
]∑i−1

k=1 C
k
t ;

∑i
k=1 C

k
t

]
Computing forward prices:

ft(T ) =
n∑

i=1

P∗
[
DT ∈ I iT |Ft

]
hi f

i
t (T )

Simple interpretation: the power future price is the weighted averaged of futures fuel, the weights
corresponding to the percentage of marginality for each technology
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Summary

Conclusion and a view toward future work
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Conclusion

Gaussian factor models are the preferred approach for risk management applications;
The use of Lévy processes has allowed many researchers to enrich the dynamics of spot prices to
represent these spikes, but at the cost of increasing the complexity of the derivatives calculation;
The consideration of multidimensional models is very useful in practice, given the natural exposure
of energy assets to several markets:

I The dependency structure between the different prices modeled is very important. The calibration
may be difficult,

I Approaches in the literature are very classical: simple correlation, coupling factors, cointegration;

Structural models seem promising for the representation of spot prices but make risk management
complex:

I They have benefited from thorough treatments, for example by Aïd et al. [Aïd et al., 2013],
I The calibration of structural models is also complex, since all the uncertainties used for the

fundamental representation must be the subject of a modeling and estimation effort.
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Future work

A need of joint models on weather variables and power prices:
I Expected increase of renewable energy => expected increase of weather impacts on power production

=> expected increase of power price volatility,
I Expected increase of the impact of weather conditions on conventional thermal power plants (due to

more frequent extreme climatic events),
I Only a few papers attempting to depict the dependency between weather variables and power prices

[Veraart, 2016, Deschatre and Veraart, 2017, Rowińska et al., 2020];

A need to model interconnections:
I Interconnections between markets expand, models develop to reproduce previously ignored facts, such

as the equality of prices in multiple countries over multiple time periods,
I The recent work of Gardini et al. [Gardini et al., 2020b, Gardini et al., 2020a] and Christensen and

Benth [Christensen and Benth, 2020] are notable advances in incorporating the connected nature of
markets into modeling, without using the complexity of structural models like in
[Alasseur and Féron, 2018].
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Future work

A need to depict liquidity / market impact / market incompleteness:
I Lack of liquidity that must be taken into account on trading strategies and hedging strategies,
I Only a few works exist [Hess, 2017, Kremer et al., 2020];

A need to model intraday prices:
I The development of renewable production increases price risk in the intraday level,
I The valuation of flexibilities must be computed on intraday prices,
I The multi-horizon modeling of Hinderks et al. [Hinderks et al., 2020] demonstrates the opportunities

and challenges in terms of modeling such prices together.
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Appendix

Structural models: summary
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Structural models: summary (1/2)

Model
Fundamental variables

considered
Futures prices
computation Markets studied

[Eydeland and Geman, 1999] Demand Analytical US marketsMarginal fuel

[Kosecki, 1999] Demand Solution of PDE US marketsMarginal fuel

[Barlow, 2002] Demand Semi analytical Alberta
California

[Burger et al., 2004]
Demand Analytical

EEXMaximal capacity with
2 unobservable factors approximation

[Kanamura and Ohashi, 2007] Demand Semi analytical PJM

[Pirrong and Jermakyan, 2008] Demand
Solution of PDE PJMMarginal fuel

[Pirrong, 2011] (Outage)

[Coulon and Howison, 2009] Demand Analytical NEPOOL
Maximal capacity case 1 fuel PJM
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Structural models: summary (2/2)

Model
Fundamental variables

considered
Futures prices
computation Markets studied

[Aïd et al., 2009] Demand
Analytical FranceK fuel costs

[Aïd et al., 2013] K capacities

[Lyle and Elliott, 2009] Demand Analytical AlbertaBaseload capacity

[de Maere d’Aertrycke and Smeers, 2010] Demand Solution of PDE GermanyMarginal fuel

[Coulon et al., 2013]

Demand

Analytical ERCOTGas price
1 unobservable factor

1 state variable

[Carmona et al., 2013] Demand Analytical -
K fuel costs

[Wagner, 2014]
Demand

Monte Carlo GermanyWind production
Solar production
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